精英家教网 > 高中数学 > 题目详情
如图,空间四边形ABCD被一平面所截,截面EFGH是平行四边形.
(1)求证:CD平面EFGH;
(2)如果AB=CD=a,求证:四边形EFGH的周长为定值.
证明:(1)∵空间四边形ABCD被一平面所截,截面EFGH是平行四边形,
∴EFGH,
又∵EF?平面BDC,GH?平面BDC,
∴EF平面BDC,
∵EF?平面ADC,
平面ADC∩平面BDC=DC,
∴EFDC,又CD?平面EFGH
∴CD平面EFGH.
(2)∵空间四边形ABCD被一平面所截,截面EFGH是平行四边形.
AB=CD=a,
AF
AC
=
EF
CD
CF
AC
=
FG
AB

AF
AC
+
CF
AC
=
EF
CD
+
FG
AB

∵AB=CD=a,
AF
AC
+
CF
AC
=1,
EF
CD
+
FG
AB
=
EF+FG
a

EF+FG
a
=1,
∴EF+FG=a,
∴四边形EFGH的周长=2a.
故四边形EFGH的周长为定值.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图所示,A∉平面α,AB、AC是平面α的两条斜线,O是A在平面α内的射影,AO=4,OC=
3
,BO⊥OC,∠OBA=30°,则C到AB的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三角形ABC中,AC=BC=
2
2
AB
,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G、F分别是EC、BD的中点.
(Ⅰ)求证:GF底面ABC;
(Ⅱ)求证:AC⊥平面EBC;
(Ⅲ)求几何体ADEBC的体积V.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点,
(1)求证:AC⊥BC1
(2)求证:AC1平面CDB1
(3)求二面角C1-AB-C的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA⊥PD,E,F分别为PC,BD的中点.证明
(1)EF平面PAD;
(2)EF⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知矩形ABCD,AB=2,BC=x,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中,则(  )
A.当x=1时,存在某个位置,使得AB⊥CD
B.当x=
2
时,存在某个位置,使得AB⊥CD
C.当x=4时,存在某个位置,使得AB⊥CD
D.?x>0时,都不存在某个位置,使得AB⊥CD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

长方体ABCD-A1B1C1D1中,AA1=
2
,AB=BC=2,O是底面对角线的交点.
(Ⅰ)求证:B1D1平面BC1D;
(Ⅱ)求证:A1O⊥平面BC1D;
(Ⅲ)求三棱锥A1-DBC1的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EFAC,AB=
2
,CE=EF=1,∠ECA=60°.
(1)求证:AF平面BDE;
(2)求异面直线AB与DE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正六棱柱ABCDEF-A1B1C1D1E1F1的所有棱长均为2,G为AF的中点.
(1)求证:F1G平面BB1E1E;
(2)求证:平面F1AE⊥平面DEE1D1
(3)求四面体EGFF1的体积.

查看答案和解析>>

同步练习册答案