精英家教网 > 高中数学 > 题目详情
5.指数函数y=ax在[1,2]上的最大值与最小值的和为6,则a=(  )
A.2B.3C.2或$\frac{3}{2}$D.$\frac{3}{2}$

分析 由于指数函数y=ax在[1,2]上是一个单调函数,故函数在这个区间上的最值一定在端点处取到,由此知,求出两个函数端点处的函数值,由它们的和是3建立关于参数a的方程解出答案,再选出正确选项

解答 解:由题意,指数函数y=ax在[1,2]上是单调函数,故函数的最值在区间的两个端点处取到,
又指数函数y=ax在[1,2]上的最大值与最小值的和为6,
∴a+a2=6,解得a=2,或a=-3(舍去)
故选:A.

点评 本题考查指数函数单调生的应用,熟练掌握指数函数单调性,由性质判断出最值在何处取到是解题的关键,由指数函数的单调性判断出函数最值在区间的两个端点处取到是解题的难点,重点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x},x>0}\\{{x}^{3}+3,x≤0}\end{array}\right.$,对于方程f(2x2+x)=a.
(1)若a=3,方程实根的个数为6.
(2)若a∈(2,+∞),方程实根个数的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a为实数,函数f(x)=a•lnx+x2-4x.
(Ⅰ)令a=-6,求函数f(x)的单调区间;
(Ⅱ)是否存在实数a,使得f(x)在x=1处取极值?证明你的结论;
(Ⅲ)若存在区间[2,3]⊆D,使得函数f(x)在D上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.实数x,y满足圆的标准方程(x+1)2+(y-2)2=4
(Ⅰ)求$\frac{y}{x-4}$的最小值;
(Ⅱ)求定点(1,0)到圆上点的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知:函数f(x)=lg(1-x)+lg(p+x),其中p>-1
(1)求f(x)的定义域;
(2)若p=1,当x∈(-a,a]其中a∈(0,1),a是常数时,函数f(x)是否存在最小值,若存在,求出f(x)的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$(a>0,a≠1).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)求a的取值范围,使xf(x)>0在定义域上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.用定义证明函数f(x)=3x-1在(-∞,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=f(x)的定义域是[0,2],则函数y=$\frac{f(2x)}{\sqrt{1-x}}$+lgx的定义域是(  )
A.[0,1]B.[0,1)C.[0,1)∪(1,4]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解关于x的不等式:mx2-(2m+1)x+2>0(m∈R).

查看答案和解析>>

同步练习册答案