精英家教网 > 高中数学 > 题目详情
17.在△ABC中,a,b,c分别是内角A,B,C的对边,且b2+c2-a2=bc.
(1)求角A的大小;
(2)设函数$f(x)=sinx+2{cos^2}\frac{x}{2}-1,a=2,f(B)=\sqrt{2}$时,求b.

分析 (1)由余弦定理可得cosA=$\frac{1}{2}$,结合范围0<A<π,利用特殊角的三角函数值可求A的值.
(2)利用三角函数恒等变换的应用化简函数解析式可得f(x)=$\sqrt{2}$sin(x+$\frac{π}{4}$),结合已知可求B,进而利用正弦定理可求b的值.

解答 (本题满分为10分)
解:(1)∵在△ABC中,b2+c2-a2=bc.
∴由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∵0<A<π,
∴A=$\frac{π}{3}$…5分
(2)∵f(x)=sinx+2cos2$\frac{x}{2}$=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),
∴f(B)=$\sqrt{2}$sin(B+$\frac{π}{4}$)=$\sqrt{2}$,解得B=$\frac{π}{4}$,
∵$\frac{a}{sinA}=\frac{b}{sinB}$,可得:b=$\frac{asinB}{sinA}$=$\frac{2×\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=$\frac{2\sqrt{6}}{3}$…10分

点评 本题主要考查了余弦定理,特殊角的三角函数值,三角函数恒等变换的应用,正弦定理在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.函数y=$\frac{{\sqrt{{{log}_{\frac{1}{2}}}(x+1)}}}{3x+1}$的定义域是(  )
A.[-1,+∞)B.(-1,+∞)C.$({-1,-\frac{1}{3}})∪({-\frac{1}{3},+∞})$D.$({-1,-\frac{1}{3}})∪({-\frac{1}{3},0}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=xlnx,g(x)=λ(x2-1)(λ为常数)
(1)已知函数y=f(x)与y=g(x)在x=1处有相同的切线,求实数λ的值;
(2)如果$λ=\frac{1}{2}$,且x≥1,证明f(x)≤g(x);
(3)若对任意x∈[1,+∞),不等式f(x)≤g(x)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=x+$\frac{4}{x}$,g(x)=2x+a,若?x1∈[$\frac{1}{2}$,3],?x2∈[2,3],使得f(x1)≥g(x2),则实数a的取值范围a≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.正整数数列{an}满足a1=1,an+1=$\left\{\begin{array}{l}{{a}_{n}-n,{a}_{n}>n}\\{{a}_{n}+n,{a}_{n}≤n}\end{array}\right.$,将数列{an}中所有值为1的项的项数按从小到大的顺序依次排列,得到数列{nk},则nk+1=3nk+1(k=1,2,3,…).(用nk表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点G是△ABC的重心,A(0,-1),B(0,1).在x轴上有一点M,满足|$\overrightarrow{MA}$|=|$\overrightarrow{MC}$|,$\overrightarrow{GM}$=λ$\overrightarrow{AB}$(λ∈R)(若△ABC的顶点坐标为A(x1,y1),B(x2,y2),C(x3,y3),则该三角形的重心坐标为G($\frac{{{x_1}+{x_2}+{x_3}}}{3}$,$\frac{{{y_1}+{y_2}+{y_3}}}{3}$).
(1)求点C的轨迹E的方程;
(2)若斜率为k的直线l与(1)中的曲线E交于不同的两点P、Q,且|$\overrightarrow{AP}$|=|$\overrightarrow{AQ}$|,试求斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.{an}是等差数列,{bn}是等比数列,若a2=b2>0,a4=b4>0,a2≠a4,b1>0,则(  )
A.a1<b1,a3<b3B.a1<b1,a3>b3C.a1<b1,a5>b5D.a1<b1,a5<b5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知关于x的不等式组$\left\{\begin{array}{l}{4(x-1)+2>3x}\\{x-1<\frac{6x+a}{7}}\end{array}\right.$,有且只有三个整数解,则a的取值范围是(  )
A.-2≤a≤-1B.-2≤a<-1C.-2<a≤-1D.-2<a<-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知α∈(0,π),tan($α-\frac{π}{4}$)=$\frac{1}{3}$,则sin($\frac{π}{4}+α$)=$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

同步练习册答案