精英家教网 > 高中数学 > 题目详情
在各项均为正数的等差数列{an}中,对任意n∈N*都有a1+a2+…+an=
1
2
anan+1
(1)求数列{an}的通项an
(2)设数列{bn}满足b1=1,bn+1-bn=2 an,求证:对任意的n∈N*都有bn•bn+2<bn+12
考点:数列递推式,数列的概念及简单表示法
专题:综合题,等差数列与等比数列
分析:(1)求出d=1,从而a1=a2-d=1,即可求数列{an}的通项an
(2)利用叠加法求出bn=2n-1,利用作差法,即可证明结论.
解答: 解:(1)设等差数列{an}的公差为d
n=1,得a1=
1
2
a1a2
a1>0,得a2=2.
n=2,得a1+a2=
1
2
a2a3
a1+2=a1+2d,得d=1.
从而a1=a2-d=1.
an=1+(n-1)•1=n
(2)证明:因为an=n,所以bn+1-bn=2n
所以bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=2n-1+2n-2+…+2+1
=2n-1.
bnbn+2-bn+12=(2n-1)(2n+2-1)-(2n+1-1)2=-2n<0,
所以bnbn+2<bn+12
点评:本题考查等差数列的通项,考查叠加法,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于实数x,符号[x]不超过x的最大整数,例如[π]=3,[-3.5]=-4,定义函数f(x)=x-[x],则下列结论正确的是(  )
A、方程f(x)=k(k∈R)有且仅有一个解
B、函数f(x)的最大值为1
C、函数f(x)是增函数
D、函数f(x)的最小值为0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i为虚数单位,若函数f(x)=
(1-i)2i,x≤0
a-2cosx,x>0
的图象是一条连续不断的曲线,则实数a的值为(  )
A、4B、2C、0D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系中,圆C:(x-a)2+(y-b)2=10(a>b>0)在直线x+2y=0上截得的弦长为2
5

(1)求a,b满足的关系;
(2)当a2+b2取得最小值时,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证;
(1)sin4α-cos4α=sin2α-cos2α;
(2)sin4α+sin2αcos2α+cos2α=1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程
x2
m+2
-
y2
m-2
=1表示焦点在y轴上的椭圆,则实数m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A,B,C所对的边分别是a,b,c,函数f(x)=sin(
π
2
+x)cos(A-x)(x∈R)的最大值为
2+
3
4

(1)求角A的大小
(2)若△ABC面积的最大值为2+
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=2an(n∈N*),则下列判断中正确的是(  )
A、{an}是等差数列
B、{an}是等比数列
C、{an}既是等差数列,又是等比数列
D、{an}既不是等差数列,又不是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式(
1
2
)
x-1
2x+1
≥1的解集为
 

查看答案和解析>>

同步练习册答案