精英家教网 > 高中数学 > 题目详情
已知函数
(Ⅰ)求证:函数上是增函数.
(Ⅱ)若上恒成立,求实数a的取值范围.
(Ⅲ)若函数上的值域是,求实数a的取值范围.
(1)证明见解析
(2)的取值范围为 
(3)

(1)当用定义或导数证明单调性均可.
(2)上恒成立.设上恒成立.
可证单调增。故的取值范围为 
(3)的定义域为 
上单调增 
有两个不相等的正根m,n, 
时,可证上是减函数.
 综上所述,a的取值范围为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)的定义域为R,对任意的,且当时,.
(Ⅰ)求证:函数f(x)为奇函数;
(Ⅱ)求证:
(Ⅲ)求函数在区间[-n,n](n)上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x2+(lga+2)x+lgb,g(x)=2x+2,若f(-1)=0,且对一切实数x,不等式f(x)≥g(x)恒成立;
(Ⅰ)(本问5分)求实数a、b的值;
(Ⅱ)(本问7分)设F(x)=f(x)-g(x),数列{an}满足关系an=F(n),
证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在区间(0,)上的函f(x)满足:(1)f(x)不恒为零;(2)对任何实数x、q,都有.
(1)求证:方程f(x)=0有且只有一个实根;
(2)若a>b>c>1,且a、b、c成等差数列,求证:
(3)(本小题只理科做)若f(x) 单调递增,且m>n>0时,有,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若函数在其定义域内为单调函数,求的取值范围;
(2)若函数的图象在处的切线的斜率为0,且, 已知,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是直线上的三点,点在直线外,向量满足
(Ⅰ)求函数的表达式;
(Ⅱ)若不等式恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.
已知函数.
(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;
(2)若函数上是以3为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某地有三个村庄,分别位于等腰直角三角形ABC的三个顶点处,已知AB=AC=6km,现计划在BC边的高AO上一点P处建造一个变电站. 记P到三个村庄的距离之和为y.
(1)设,把y表示成的函数关系式;
(2)变电站建于何处时,它到三个小区的距离之和最小?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


化简

查看答案和解析>>

同步练习册答案