精英家教网 > 高中数学 > 题目详情

【题目】如图,高尔顿板是英国生物统计学家高尔顿设计的用来研究随机现象的模型,它是在一块竖起的木板上钉上一排排互相平行,水平间隔相等的圆柱形铁钉,并且每一排钉子数目都比上一排多一个,一排中各个钉子恰好对准上面一排两相邻铁钉的正中央,从入口处放入一个直径略小于两颗钉子间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接着小球再通过两钉的间隙,又碰到下一排铁钉,如此继续下去,在最底层的5个出口处各放置一个容器接住小球,那么,小球落入1号容器的概率是______,若取4个小球进行试验,设其中落入4号容器的小球个数为x,则x的数学期望是______.

【答案】 1

【解析】

要使小球落入1号容器,则每一层小球必须向左,而每一层小球向左、向右的概率均为;小球落入4号容器,则四层中小球有三层向右,一层向左,故每个小球落入4号容器的概率为,写出随机变量所有可能的取值,再算出相应的概率,利用期望公式计算即可.

要使小球落入1号容器,则每一层小球必须向左,故概率为

小球落入4号容器,则四层中小球有三层向右,一层向左,故每个小球落入4号容器

的概率为,由题意知,.

;

.

.

故答案为: (1). (2). 1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】改革开放以来,中国快递行业持续快速发展,快递业务量从上世纪年代的万件提升到2018年的亿件,快递行业的发展也给我们的生活带来了很大便利.已知某市某快递点的收费标准为:首重(重量小于等于)收费元,续重(不足). (:一个包裹重量为则需支付首付元,续重元,一共元快递费用)

1)若你有三件礼物重量分别为,要将三个礼物分成两个包裹寄出(:合为一个包裹,一个包裹),那么如何分配礼物,使得你花费的快递费最少?

2)对该快递点近天的每日揽包裹数(单位:)进行统计,得到的日揽包裹数分别为件,件,件,件,件,那么从这天中随机抽出天,求这天的日揽包裹数均超过件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(1)求椭圆的方程;

(2)如图,过定点的直线交椭圆两点,连接并延长交,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间与极值.

(2)时,是否存在,使得成立?若存在,求实数的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数,试讨论的单调性;

2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.

1)经过1轮投球,记甲的得分为,求的分布列;

2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.

①求

②规定,经过计算机计算可估计得,请根据①中的值分别写出ac关于b的表达式,并由此求出数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数的两个零点为

1)求的单调区间;

2)若的极小值为,求在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为抗击“新冠肺炎”,全国各地“停课不停学”,各学校都开展了在线课堂,组织学生在线学习,并自主安排时间完成相应作业为了解学生的学习效率,某在线教育平台统计了部分高三备考学生每天完成数学作业所需的平均时间,绘制了如图所示的频率分布直方图.

1)如果学生在完成在线课程后每天平均自主学习时间(完成各科作业及其他自主学习)为小时,估计高三备考学生每天完成数学作业的平均时间占自主学习时间的比例(同一组中的数据用该组区间的中点值为代表)(结果精确到);

2)以统计的频率作为概率,估计一个高三备考学生每天完成数学作业的平均时间不超过分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, ,角的平分线于点,设.(1)求;(2)若,求的长.

查看答案和解析>>

同步练习册答案