精英家教网 > 高中数学 > 题目详情
4.(1)计算:${(2\frac{1}{4})^{\frac{1}{2}}}+(lg7{)^0}+{(\frac{8}{125})^{-\frac{1}{3}}}$;
(2)解方程:${log_2}({3^x}-49)=5$.

分析 (1)由指数幂的运算法则化简可得;
(2)方程可化为3x-49=25,由指数幂的运算解方程可得.

解答 解:(1)化简可得${(2\frac{1}{4})^{\frac{1}{2}}}+(lg7{)^0}+{(\frac{8}{125})^{-\frac{1}{3}}}$
=$\sqrt{\frac{9}{4}}$+1+$[(\frac{2}{5})^{3}]^{-\frac{1}{3}}$=$\frac{3}{2}$+1+$\frac{5}{2}$=5;
(2)方程${log_2}({3^x}-49)=5$可化为3x-49=25
∴3x=25+49=81=34,解得x=4

点评 本题考查指数幂的化简求值,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,其左、右焦点分别是F1,F2,过点F1的直线l交椭圆C于E,G两点,且△EGF2的周长为$4\sqrt{2}$.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于不同两点A,B,且A,B两点都在y轴的右侧,设P为椭圆上一点,且满足$\overrightarrow{OA}+\overrightarrow{OB}=t\overrightarrow{OP}(O$为坐标原点),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知N(1,0),动点M满足$k+{(\overrightarrow{OM})^2}=1+K{(\overrightarrow{OM}•\overrightarrow{ON})^2}$,k∈R,其中O是坐标原点,
(1)求动点M的轨迹方程,并判断曲线类型;
(2)如果动点M的轨迹是一条圆锥曲线,其离心率e满足$\frac{{\sqrt{3}}}{3}≤e≤\frac{{\sqrt{2}}}{2}$,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知p,q满足p+2q-1=0,则直线px+3y+q=0必过定点(  )
A.$(-\frac{1}{6},\frac{1}{2})$B.$(\frac{1}{2},\frac{1}{6})$C.$(\frac{1}{2},-\frac{1}{6})$D.$(\frac{1}{6},-\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.集合A={-1,1},则集合A的子集共有(  )
A.2个B.4个C.6个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数f(x)=cos2x的图象向左平移$\frac{π}{3}$个单位得到函数g(x)的图象,则函数g(x)(  )
A.一个对称中心是(-$\frac{π}{3}$,0)B.一条对称轴方程为x=$\frac{π}{3}$
C.在区间[-$\frac{π}{3}$,0]上单调递减D.在区间[0,$\frac{π}{3}$]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列说法正确的是(  )
A.命题“?x∈R,2x>0”的否定是“?x0∈R,2${\;}^{{x}_{0}}$≤0”
B.命题“若xy=0,则x=0或y=0”的否命题为“若xy≠0则x≠0或y≠0”
C.若命题p,¬q都是真命题,则命题“p∧q”为真命题
D.“x=-1”是“x2-5x-6=0”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列对应是从集合S到T的映射的是(  )
A.S=N,T={-1,1},对应法则是n→(-1)n,n∈S
B.S={x|x∈R},T={y|y∈R},对应法则是x→y=$\frac{1+x}{1-x}$
C.S={0,1,2,5},T={1,$\frac{1}{2}$,$\frac{1}{5}$},对应法则是取倒数
D.S={0,1,4,9},T={-3,-2,-1,0,1,2,3},对应法则是开平方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数y=f(x)是定义域为D,且f(x)同时满足以下条件:
①f(x)在D上是单调函数;
②存在闭区间[a,b]?D(其中a<b),使得当x∈[a,b]时,f(x)的取值集合也是[a,b].则称函数y=f(x)(x∈D)是“合一函数”.
(1)请你写出一个“合一函数”;
(2)若f(x)=$\sqrt{x+1}$+m是“合一函数”,求实数m的取值范围.
(注:本题求解中涉及的函数单调性不用证明,直接指出是增函数还是减函数即可)

查看答案和解析>>

同步练习册答案