精英家教网 > 高中数学 > 题目详情
1.若集合M={x∈N|x2-8x+7<0},N={x|$\frac{x}{3}$∉N},则M∩N等于(  )
A.{3,6}B.{4,5}C.{2,4,5}D.{2,4,5,7}

分析 求解一元二次不等式化简M,再由交集运算得答案.

解答 解:∵M={x∈N|x2-8x+7<0}={x∈N|1<x<7}={2,3,4,5,6},N={x|$\frac{x}{3}$∉N},
∴M∩N={2,3,4,5,6}∩{x|$\frac{x}{3}$∉N}={2,4,5},
故选:C.

点评 本题考查交集及其运算,考查了一元二次不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知全集U={x∈N|1≤x≤10},A={1,2,3,5,8},B={1,3,5,7,9}.
(Ⅰ)求A∩B;               
(Ⅱ)求(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.集合A={$\frac{9}{10-x$∈N|x∈N}的真子集的个数是(  )
A.4B.7C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合A={x|x≥2},B={x|$\frac{x-1}{x-4}>0$},则A∩B=(  )
A.B.[2,4)C.[2,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在多面体ABCDEFG中,四边形ABCD与ADEF是边长均为a的正方形,四边形ABGH是直角梯形,AB⊥AF,且FA=2FG=4FH.
(1)求证:平面BCG⊥平面EHG;
(2)若a=4,求四棱锥G-BCEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=($\sqrt{3}$,1),则$\overrightarrow{a}$与$\overrightarrow{b}$夹角的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,内角A、B、C所对的边分别为a、b、c,若$sin({\frac{3}{2}B+\frac{π}{4}})=\frac{{\sqrt{2}}}{2}$,且a+c=2,则△ABC周长的取值范围是(  )
A.(2,3]B.[3,4)C.(4,5]D.[5,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次函数f(x)满足条件f(0)=1和顶点坐标(-2,-3)
(1)求f(x);
(2)指出f(x) 的图象可以通过 y=x2的图象如何平移得到;
(3)求f(x)在区间[-1,1]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线y=3-x与两坐标轴围成的区域为Ω1,不等式组$\left\{\begin{array}{l}y≤3-x\\ x≥0\\ y≥2x\end{array}\right.$所形成的区域为Ω2,现在区域Ω1中随机放置一点,则该点落在区域Ω2的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案