精英家教网 > 高中数学 > 题目详情
17.函数f(x)、g(x)的定义域都是R,f(x)是奇函数,g(x)为偶函数,且2f(x)+3g(x)=9x2-4x+1.
(1)求f(x),g(x)的解析式;
(2)若F(x)=[f(x)]2-3g(x),求F(x)的值域和单调区间.

分析 (1)根据f(x)、g(x)的奇偶性,得出-2f(x)+3g(x)=9x2+4x+1②;又2f(x)+3g(x)=9x2-4x+1①,由①、②,求得f(x)、g(x);
(2)F(x)=[f(x)]2-3g(x)=-5x2+1,即可求F(x)的值域和单调区间.

解答 解:(1)∵f(x)为奇函数,g(x)为偶函数,
∴f(-x)=-f(x),g(-x)=g(x),
且2f(x)+3g(x)=9x2-4x+1,①,
∴2f(-x)+3g(-x)=9x2+4x+1,
即-2f(x)+3g(x)=9x2+4x+1,②;
由①、②解得f(x)=-2x,g(x)=3x2+$\frac{1}{3}$.
(2)F(x)=[f(x)]2-3g(x)=-5x2-1,
∴F(x)的值域是(-∞,1];单调区间(-∞,0)单调递增,(0,+∞)单调递减.

点评 本题考查了函数的奇偶性的应用问题,解题时应根据题意,结合奇偶性建立二元一次方程组,从而求出答案来,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若椭圆$\frac{x^2}{3-k}+\frac{y^2}{1+k}=1$的焦点在x轴上,则k的取值范围为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.数列{an}中,an+1=1+$\frac{1}{{a}_{n}}$,a1=1,则an=$\frac{1}{2}[\frac{(1+\sqrt{5})^{n+1}-(1-\sqrt{5})^{n+1}}{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}]$.(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.给出下列四个命题:
①?α∈R,$sinα-cosα=\frac{7}{5}$;
②函数$f(x)=\sqrt{3}sin2x+cos2x$图象的对称中心是$({\frac{kπ}{2}-\frac{π}{6},0})$(k∈Z);
③函数$f(x)=\frac{sinx}{3-cosx}$是周期函数,2π是它的一个周期;
④(tan14°+1)(tan31°+1)=(tan16°+1)(tan29°+1).
其中正确命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)证明不等式$\frac{x}{1+x}$<ln(1+x)<x,x>0
(2)在数列{an}中.已知a1=$\frac{1}{2}$,且$\frac{{a}_{n}{a}_{n-1}}{{a}_{n-1}-{a}_{n}}$=1+$\frac{1}{{n}^{2}-n-1}$,求数列{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数y=f(x)是偶函数,f′(x)是f(x)的导函数,若f′(x)>f(x),则下列不等式(e为自然对数的底数)①e2f(2)<ef(1)<f(0);②e-1f(1)<f(0)<e2f(2);③e2f(2)<f(0)<e-1f(1)成立的个数有(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E、F分别为侧棱BB1、CC1的中点,求四棱锥B-A1EFD1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点A($\sqrt{2}$,0),B(-$\sqrt{2}$,0),直线PA与PB的斜率之积为定值-$\frac{1}{2}$.
(1)求动点P的轨迹E的方程;
(2)在轨迹E上求一点M,使它到直线l:x-y-2$\sqrt{3}$=0的距离最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设U={1,2,3,4,5,6,7},A={1,4,5},B={3,5,7},求(∁UA)∩B,(∁UB)∪A,(∁UB)∩(∁UA),∁U(A∪B)

查看答案和解析>>

同步练习册答案