【题目】如图,在△ABC中,∠B=90°,AB=BC=2,P为AB边上一动点,PD∥BC交AC于点D,现将△PDA沿PD翻折至△PDA1,E是A1C的中点.
(1)若P为AB的中点,证明:DE∥平面PBA1.
(2)若平面PDA1⊥平面PDA,且DE⊥平面CBA1,求四棱锥A1﹣PBCD的体积.
科目:高中数学 来源: 题型:
【题目】为激发学生学习的兴趣,老师上课时在黑板上写出三个集合: ;然后叫甲、乙、丙三位同学到讲台上,并将“”中的数告诉了他们,要求他们各用一句话来描述,以便同学们能确定该数,以下是甲、乙、丙三位同学的描述:
甲:此数为小于6的正整数;乙:A是B成立的充分不必要条件;
丙:A是C成立的必要不充分条件
若老师评说这三位同学都说得对,则“”中的数为 。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在直角坐标系xOy中,设倾斜角为α的直线l:(t为参数)与曲线C:(θ为参数)相交于不同的两点A,B.
(Ⅰ)若α=,求线段AB中点M的坐标;
(Ⅱ)若|PA|·|PB|=|OP|,其中P(2,),求直线l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=90°,AB=BC=2,P为AB边上一动点,PD∥BC交AC于点D,现将△PDA沿PD翻折至△PDA1,E是A1C的中点.
(1)若P为AB的中点证明:DE∥平面PBA1.
(2)若平面PDA1⊥平面PDA,且DE⊥平面CBA1,求二面角P﹣A1D﹣C的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax﹣cosx,a≠0.
(1)若函数f(x)为单调函数,求a的取值范围;
(2)若x∈[0,2π],求:当a≥时,函数f(x)仅有一个零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(1)求{an}和{bn}的通项公式;
(2)求数列{a2nbn}的前n项和(n∈N*).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为弘扬中华民族传统文化,某中学学生会对本校高一年级1000名学生课余时间参加传统文化活动的情况,随机抽取50名学生进行调查,将数据分组整理后,列表如下:
参加场数 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
参加人数占调查人数的百分比 | 8% | 10% | 20% | 26% | 18% | 12% | 4% | 2% |
估计该校高一学生参加传统文化活动情况正确的是().
A. 参加活动次数是3场的学生约为360人B. 参加活动次数是2场或4场的学生约为480人
C. 参加活动次数不高于2场的学生约为280人D. 参加活动次数不低于4场的学生约为360人
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com