精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=x-xlnx,g(x)=ax2(lnx-$\frac{1}{2}$).
(Ⅰ)求曲线y=f(x)在点(e,f(e))处的切线方程(e为自然对数的底数,e=2.718…);
(Ⅱ)若函数F(x)=f(x)+g(x),求F(x)的单调区间.

分析 (Ⅰ)求出函数的导数,求得切线的斜率和切点,由点斜式方程可得切线方程;
(Ⅱ)求出函数的导数,对a讨论,当a≤0时,若a=$\frac{1}{2}$,若a>$\frac{1}{2}$,若0<a<$\frac{1}{2}$,由导数大于0,可得增区间,由导数小于0,可得减区间.

解答 解:(Ⅰ)函数f(x)=x-xlnx的导数为f′(x)=1-(1+lnx)=-lnx,
f(x)在点(e,f(e))处的切线斜率为-1,切点为(e,0),
则f(x)在点(e,f(e))处的切线方程为y=-x+e;
(Ⅱ)F′(x)=1-(1+lnx)+2ax(lnx-$\frac{1}{2}$)+ax=-lnx(1-2ax),
①当a≤0时,F′(x)=-lnx,由F′(x)>0,可得0<x<1;
由F′(x)<0,可得x>1,
则f(x)的增区间为(0,1),减区间为(1,+∞);
②若a=$\frac{1}{2}$,由F′(x)>0,可得0<x<1或x>1,
f(x)的增区间为(0,1),(1,+∞);
③若a>$\frac{1}{2}$,由F′(x)>0,可得x>1或0<x<$\frac{1}{2a}$;
由F′(x)<0,可得$\frac{1}{2a}$<x<1,
f(x)的增区间为(0,$\frac{1}{2a}$),(1,+∞),减区间为($\frac{1}{2a}$,1);
④若0<a<$\frac{1}{2}$,由F′(x)>0,可得0<x<1或x>$\frac{1}{2a}$;
由F′(x)<0,可得1<x<$\frac{1}{2a}$,
f(x)的增区间为(0,1),($\frac{1}{2a}$,+∞),减区间为(1,$\frac{1}{2a}$).

点评 本题考查导数的运用:求切线的方程和单调区间,运用分类讨论的思想方法和正确求导是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.函数f(x)=$\sqrt{1-2{x}^{2}}$的值域为[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)终边在直线y=$\sqrt{3}$x上,且在[-2π,2π)内的角α的集合为{-$\frac{2π}{3}$,-$\frac{5π}{3}$,$\frac{π}{3}$,$\frac{4π}{3}$}.
(2)如果α是第三象限的角.试确定-α,2α的终边所在位置.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=$\left\{\begin{array}{l}{2x-1(x<\frac{1}{2})}\\{f(x-1)+1(x≥\frac{1}{2})}\end{array}\right.$,则f($\frac{1}{4}$)+f($\frac{7}{6}$)=(  )
A.-$\frac{1}{6}$B.$\frac{1}{6}$C.$\frac{5}{6}$D.-$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若实数x,y满足x2+y2-2x+6y+9=0,则|$\sqrt{3}$x+y-$\sqrt{3}$|的最大值、最小值分别为 (  )
A.5、1B.5、0C.7、1D.7、0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)的定义域为(0,+∞),求函数y=f(x-1)+f(2-x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={a1,a2,a3,…am},D={a1,a2,a3,…an},且n>m,给出下列命题
①满足A⊆C⊆D的集合C的个数为2n-m
②满足A?C⊆D的集合C的个数为2n-m-1
③满足A⊆C?D的集合C的个数为2n-m-1;
④满足A?C?D的集合C的个数为2n-m-2
其中正确的是(  )
A.①③B.②③C.①④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知M={-$\frac{1}{2}$,3},N=(x|mx=1},若N⊆M,则适合条件的实数m构成的集合P为(  )
A.{-2,$\frac{1}{3}$}B.{-$\frac{1}{2}$,$\frac{1}{3}$}C.{0,-2,$\frac{1}{3}$}D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.利用斜二测画法得到的:①正三角的直观图仍是正三角形②钝角三角形的直观图仍是钝角三角形③直角三角形的直观图可能是直角三角形④直观图不会改变多边形中边的形状,以上结论正确的是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案