精英家教网 > 高中数学 > 题目详情

【题目】函数y=x+sin|x|,x∈[﹣π,π]的大致图象是(
A.
B.
C.
D.

【答案】A
【解析】解:由题意可知: ,当0≤x≤π时,∵y=x+sinx,∴y′=1+cosx≥0,所以函数y=x+sinx在[0,π]上为增函数;
又由sinx≥0[0,π]上恒成立,故函数y=x+sinx[0,π]上在y=x的上方;
当﹣π≤x<0时,∵y=x﹣sinx,∴y′=1﹣cosx≥0,所以函数y=x+sinx在[0,π]上为增函数;
又由sinx≤0[﹣π,0]上恒成立,故函数y=x+sinx[﹣π,0]上在y=x的下方;
又函数y=x+sin|x|,x∈[﹣π,π],恒过(﹣π,﹣π)和(π,π)两点,所以A选项对应的图象符合.
故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=sin(2014x+ )+cos(2014x﹣ )的最大值为A,若存在实数x1 , x2 , 使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,则A|x1﹣x2|的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子装有六张卡片,上面分别写着如下六个函数:

(I)从中任意拿取张卡片,若其中有一张卡片上写着的函数为奇函数,在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;

(II)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 图象过点(﹣1,2),且在该点处的切线与直线x﹣5y+1=0垂直.
(1)求实数b,c的值;
(2)对任意给定的正实数a,曲线y=f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且直线xy+1=0被圆截得的弦长为2,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)ax2bxc的图象与x轴有两个不同的交点,若f(c)00<x<c时,f(x)>0

(1)证明:f(x)0的一个根;

(2)试比较c的大小;

(3)证明:-2<b<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1过点A(﹣1,0),且斜率为k,直线l2过点B(1,0),且斜率为﹣2k,其中k≠0,又直线l1与l2交于点M.
(1)求动点M的轨迹方程;
(2)若过点N( ,1)的直线l交动点M的轨迹于C、D两点,且N为线段CD的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.

(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;

(2)若是定义在区间上的“局部奇函数”,求实数的取值范围;

(3)若为定义域上的“局部奇函数”,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(Ⅰ)求曲线在点处的切线方程.

(Ⅱ)求函数的单调区间.

(Ⅲ)求的取值范围,使得对任意成立.

查看答案和解析>>

同步练习册答案