精英家教网 > 高中数学 > 题目详情

【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:

每周移动支付次数

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合计

15

12

13

7

8

45

(Ⅰ)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,能否在犯错误概率不超过0.005的前提下,认为是否为“移动支付活跃用户”与性别有关?

(Ⅱ)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,视频率为概率,在我市所有“移动支付达人”中,随机抽取4名用户.

①求抽取的4名用户中,既有男“移动支付达人”又有女“移动支付达人”的概率;

②为了鼓励男性用户使用移动支付,对抽出的男“移动支付达人”每人奖励300元,记奖励总金额为,求的分布列及数学期望.

附公式及表如下:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(Ⅰ)在犯错误概率不超过0.005的前提下,能认为是否为“移动支付活跃用户”与性别有关.(Ⅱ)①②见解析.

【解析】分析:Ⅰ)由题意完成列联表,结合列联表计算可得.所以在犯错误概率不超过0.005的前提下,能认为是否为移动支付活跃用户与性别有关.

Ⅱ)视频率为概率,在我市移动支付达人中,随机抽取1名用户,该用户为男移动支付达人的概率为,女移动支付达人的概率为.

①有对立事件公式可得满足题意的概率值为.

②记抽出的男移动支付达人人数为,则.由题意得由二项分布公式首先求得Y的分布列,然后利用均值和方差的性质可得X的分布列,计算可得,得的数学期望.

详解:Ⅰ)由表格数据可得列联表如下:

非移动支付活跃用户

移动支付活跃用户

合计

25

20

45

15

40

55

合计

40

60

100

将列联表中的数据代入公式计算得

.

所以在犯错误概率不超过0.005的前提下,能认为是否为移动支付活跃用户与性别有关.

Ⅱ)视频率为概率,在我市移动支付达人中,随机抽取1名用户,

该用户为男移动支付达人的概率为,女移动支付达人的概率为.

①抽取的4名用户中,既有男移动支付达人,又有女移动支付达人的概率为.

②记抽出的男移动支付达人人数为,则.

由题意得

.

所以的分布列为

0

1

2

3

4

所以的分布列为

0

300

600

900

1200

,得的数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校为了解全校学生的体重情况,从全校学生中随机抽取了100 人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.

1)估计这100人体重数据的平均值和样本方差(结果取整数,同一组中的数据用该组区间的中点值作代表)

2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列和数学期望;

3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等边的边长为,点分别是上的点,且满足 (如图(1)),将沿折起到的位置,使二面角成直二面角,连接(如图(2)).

(1)求证:平面

(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左、右焦点,点在椭圆上,且离心率为

(1)求椭圆的方程;

(2)若的角平分线所在的直线与椭圆的另一个交点为为椭圆上的一点,当面积最大时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线L的参数方程为: ,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为 .

Ⅰ)求曲线C的参数方程;

Ⅱ)当 时,求直线l与曲线C交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为确定数学成绩与玩手机之间的关系,从全校随机抽样调查了40名同学,其中40%的人玩手机.这40位同学的数学分数(百分制)的茎叶图如图①所示.数学成绩不低于70分为良好,低于70分为一般.

1)根据以上资料完成下面的列联表,并判断有多大把握认为数学成绩良好与不玩手机有关系

数学成绩良好

数学成绩一般

总计

不玩手机

玩手机

总计

40

2)现将40名同学的数学成绩分为如下5组:

,其频率分布直方图如图②所示.计算这40名同学数学成绩的平均数,由茎叶图得到的真实值记为,由频率分布直方图得到的估计值记为(同一组中的数据用该组区间的中点值作代表),求的误差值.

3)从这40名同学数学成绩高于90分的7人中随机选取2人,求至少有一人玩手机的概率.

附:

40名同学的数学成绩总和为2998分.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直四棱柱的棱长均相等,且BAD=60M是侧棱DD1的中点,N是棱C1D1上的点.

1)求异面直线BD1AM所成角的余弦值;

2)若二面角的大小为,,试确定点N的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性

(2)若函数在区间上存在两个不同零点求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)讨论函数的单调性;

2)若函数存在两个极值点(其中),且的取值范围为,求的取值范围.

查看答案和解析>>

同步练习册答案