【题目】如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,M是CC1中点.
(Ⅰ)求证:平面AB1M⊥平面A1ABB1;
(Ⅱ)过点C作一截面与平面AB1M平行,并说明理由.
【答案】(Ⅰ)见解析(Ⅱ)见解析
【解析】试题分析:(Ⅰ) 连结交于,则是的中点,取中点,连结,推导出四边形是平行四边形,从而,求出,从而平面,由此能证明平面平面;(Ⅱ) 取中点中点,连结,则截面是过点与平面平行的截面,先证明 ,利用面面平行的判定定理能证明平面平面.
试题解析:(Ⅰ)证明:连接A1B交AB1于点P,
易知P是A1B的中点.
取AB中点D,连接CD,PD,MP.
因为M,D分别是CC1,AB的中点,
所以DP∥CM,且DP=CM.
所以四边形MCDP是平行四边形.
所以CD∥MP.
又AC=BC,所以CD⊥AB,
因为CC1⊥平面ABC,∴CC1⊥CD,
又AA1∥CC1,∴CD⊥AA1,
所以CD⊥平面A1ABB1,所以MP⊥平面A1ABB1.
又因为MP平面AB1M,所以平面AB1M⊥平面A1ABB1,
(Ⅱ)解:取AB中点D,BB1中点N,连接CD,CN,DN,则截面CDN为所求,
由D,N分别是AB,BB1的中点知DN∥AB1,
又在矩形BCC1B1中,M是CC1中点,
∴B1N∥CM,B1N=CM,∴四边形CMB1N是平行四边形,∴B1M∥CN,
∵CN,DN平面AB1M,B1M,AB1平面AB1M,
∴CN∥平面AB1M,DN∥平面AB1M,
∵CN∩DN=N,CN,DN平面CDN,
∴平面CDN∥平面AB1M.
科目:高中数学 来源: 题型:
【题目】已知抛物线T的焦点为F,准线为l,过F的直线m与T交于A,B两点,C,D分别为A,B在l上的射影,M为AB的中点,若m与l不平行,则△CMD是( )
A. 等腰三角形且为锐角三角形
B. 等腰三角形且为钝角三角形
C. 等腰直角三角形
D. 非等腰的直角三角形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|2x+1|+|x+1|.
(Ⅰ)求不等式f(x)≤8的解集;
(Ⅱ)若不等式f(x)>|a-2|对任意x∈R恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 (a>b>0)的离心率为.
(Ⅰ)若原点到直线x+y-b=0的距离为,求椭圆的方程;
(Ⅱ)设过椭圆的右焦点且倾斜角为45°的直线l和椭圆交于A,B两点,对于椭圆上任意一点M,总存在实数λ、μ,使等式成立,求λ2+μ2的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥PABC中,不能证明AP⊥BC的条件是( )
A. AP⊥PB,AP⊥PC
B. AP⊥PB,BC⊥PB
C. 平面BPC⊥平面APC,BC⊥PC
D. AP⊥平面PBC
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学高三文科班学生参加了数学与地理水平测试,学校从测试合格的学生中随机抽取100人的成绩进行统计分析.抽取的100人的数学与地理的水平测试成绩如下表:
成绩分为优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有20+18+4=42人.
(1)若在该样本中,数学成绩优秀率为30%,求a,b的值;
(2)若样本中,求在地理成绩及格的学生中,数学成绩优秀的人数比及格的人数少的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 (a为常数)有两个极值点.
(1)求实数a的取值范围;
(2)设f(x)的两个极值点分别为x1,x2,若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com