精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,cos2C+2 cosC+2=0.
(1)求角C的大小;
(2)若b= a,△ABC的面积为 sinAsinB,求sinA及c的值.

【答案】
(1)解:∵cos2C+2 cosC+2=0.

∴2cos2C+2 cosC+1=0,

即( cosC+1)2=0,

∴cosC=﹣

∵0<∠C<π,

∴∠C=


(2)解:∵c2=a2+b2﹣2abcosC=3a2+2a2=5a2

∴c= a,

∴sinC= sinA,

∴sinA= sinC=

∵SABC= absinC= sinAsinB,

absinC= sinAsinB,

sinC=( 2sinC=

∴c= =1


【解析】(1)利用正弦定理和已知等式,化简可求得cosC的值,进而求C.(2)利用余弦定理可求得c与a的关系,进而求得sinC,然后利用三角形面积公式和已知等式求得c.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,点 分别是椭圆 的左顶点和左焦点,点 上的动点,若 是常数,则椭圆 的离心率为________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形ABCD的边长为2,∠BAD=60°,M为DC的中点,若N为菱形内任意一点(含边界),则 的最大值为(

A.3
B.2
C.6
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直二面角中,四边形ABCD是边长为2的正方形,FCE上的点,且平面ACE

求证:平面BCE

求二面角的余弦值;

求点D到平面ACE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,命题,不等式恒成立;命题,不等式恒成立.

(1)若命题为真命题,求实数的取值范围;

(2)若为假,为真,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn=n2+2n;数列{bn}是公比大于1的等比数列,且满足b1+b4=9,b2b3=8.
(Ⅰ)分别求数列{an},{bn}的通项公式;
(Ⅱ)若cn=(﹣1)nSn+anbn , 求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年年底,某城市地铁交通建设项目已经基本完成,为了解市民对该项目的满意度,分别从不同地铁站点随机抽取若干市民对该项目进行评分(满分分),绘制如下频率分布直方图,并将分数从低到高分为四个等级:

满意度评分

低于

60分

60分

到79分

80分

到89分

不低

于90分

满意度等级

不满意

基本满意

满意

非常满意

已知满意度等级为基本满意的有人.

(1)求频率分布于直方图中的值,及评分等级不满意的人数;

(2)在等级为不满意市民中,老年人占,中青年占现从该等级市民中按年龄分层抽取人了解不满意的原因,并从中选取人担任整改督导员,求至少有一位老年督导员的概率;

(3)相关部门对项目进行验收,验收的硬性指标是:市民对该项目的满意指数不低于,否则该项目需进行整改,根据你所学的统计知识,判断该项目能否通过验收,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的右焦点为,点分别是椭圆的上、下顶点,点是直线上的一个动点(与轴的交点除外),直线交椭圆于另一个点.

(1)当直线经过椭圆的右焦点时,求的面积;

(2)①记直线的斜率分别为,求证:为定值;

②求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列A:a1a2a3,…,定义A的“差数列” A:,…

(I)若数列A:a1a2a3,…的通项公式,写出A的前3项;

(II)试给出一个数列A:a1a2a3,…,使得A是等差数列;

(III)若数列A:a1a2a3,…的差数列的差数列 A)的所有项都等于1,且==0,求的值.

查看答案和解析>>

同步练习册答案