精英家教网 > 高中数学 > 题目详情
12.已知第24届至第28届奥运会转播费收入的相关数据(取整处理)如表所示:
届数x2425262728
收入y(单位:亿美元)4691315
利用最小二乘法求的线性回归方程$\stackrel{∧}{y}$=2.9x-66.
(1)根据此回归方程预报第29届北京奥运会转播费收入;据查北京奥运会转播费实际收入为17.2亿美元,请解释预报值与实际值之间产生差异的原因;
(2)利用该回归方程已求的第24届至第28届转播费收入的预报值分别为3.6,6.5,9.4,12.3,15.2,问届数能在多大程度上解释了转播收入的变化.
参考数据:0.42+0.52+0.42+0.72+0.2=1.1;
5.42+3.42+042+3.62+5.62=85.2.

分析 (1)根据回归直线方程,预报出第29届北京奥运会转播费收入;再由相关关系的不确定性,分析释预报值与实际值之间产生差异的原因;
(2)由已知中的数据,求出相关指数,可得届数能在多大程度上解释了转播收入的变化.

解答 解:(1)∵奥运会转播费收入y与届数x的线性回归方程$\stackrel{∧}{y}$=2.9x-66.
当x=29时,$\stackrel{∧}{y}$=2.9×29-66=18.1亿美元,
由于相关关系是一种不确定关系,
故预报值与实际值之间可能会产生一定的差异;
(2)由已知中第24届至第28届转播费收入的预报值分别为3.6,6.5,9.4,12.3,15.2,
可得:第24届至第28届转播费收入的误差分别为:0.4,0.5,0.4,0.7,0.2,
而第24届至第28届转播费收入的平均数为:$\frac{1}{5}$(4+6+9+13+15)=9.4,
则第24届至第28届转播费收入与平均值的差分别为:5.4,3.4,0.4,3.6,5.6,
则相关指数R2=1-$\frac{\sum _{i=1}^{5}({y}_{i}-\widehat{y})^{2}}{\sum _{i=1}^{5}({y}_{i}-\overline{y})^{2}}$=1-$\frac{1.1}{85.2}$=0.987=98.7%,
故届数能在98.7%的程度上解释了转播收入的变化.

点评 本题考查的知识点是线性回归方程,相关指数,相关指数在考试中考的概率不大,了解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某高中学校共有学生3000名,各年级的男、女生人数如下表:(其中高三学生具体男、女生人数未统计出,设为x、y名)
高一高二高三
男生588520x
女生612480y
(1)若用分层抽样的方法在该校所有学生中抽取45名,则应在高三年级抽取多少名学生?
(2)已知该校高三年级的男女生人数都不少于395名.并且规定如果“一个年级的男女生人数相差不超过6(即男女生人数之差的绝对值不大于6)”则称该年级为“性别平衡年级”,求该校高三年级为“性别平衡年级”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如果a>0,b>0,试证明lg$\frac{a+b}{2}$≥$\frac{lga+lgb}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知一切x,y∈R,不等式x2+$\frac{81}{{x}^{2}}$-2xy+$\frac{18}{x}$$\sqrt{2-{y}^{2}}$-a≥0恒成立,则实数a的取值范围是(-∞,6].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一个三棱柱的侧视图、俯视图如图所示,则三棱柱的表面积是16+6$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx-$\frac{1}{2}$ax2+(a-1)x(a∈R).
(Ⅰ)试求函数f(x)的单调区间;
(Ⅱ)设g(x)=2ex(x+1),当a=2时,不等式-lnx+2x2+x+1<m•g(x)-f(x)对?x∈(-1,+∞)恒成立,求实数m的取值范围;
(Ⅲ)若函数y=F(x)的图象为曲线C,设点A(x1,y1),B(x2,y2)是曲线C上的不同两点,如果在曲线C上存在点M(x0,y0),使得:①x0=$\frac{{x}_{1}+{x}_{2}}{2}$;②曲线C在点M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.请问:函数y=f(x)(a∈R且a≠0)是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:
使用年限x23456
维修费用y2.23.85.56.57.0
若由资料知y对x成线性相关关系、试求:
(1)线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的回归系数$\stackrel{∧}{b}$与$\stackrel{∧}{a}$
(2)估计使用年限为10年时,维修费用是多少?(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=acosφ}\\{y=bsinφ}\end{array}\right.$(a>b>0,φ为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M(2,$\sqrt{3}$)对应的参数φ=$\frac{π}{3}$.θ=$\frac{π}{4}$与曲线C2交于点D($\sqrt{2}$,$\frac{π}{4}$).
(1)求曲线C1,C2的直角坐标方程;
(2)A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)是曲线C1上的两点,求$\frac{1}{{ρ}_{1}^{2}}$+$\frac{1}{{ρ}_{2}^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知an=3n,bn=3n,n∈N*,对于每一个k∈N*,在ak与ak+1之间插入bk个3得到一个数列{cn}.设Tn是数列{cn}的前n项和,则所有满足Tm=3cm+1的正整数m的值为3.

查看答案和解析>>

同步练习册答案