精英家教网 > 高中数学 > 题目详情

【题目】如图(1),在平面五边形中,已知四边形为正方形,为正三角形.沿着将四边形折起得到四棱锥,使得平面平面,设在线段上且满足在线段上且满足的重心,如图(2.

1)求证:平面

2)求直线与平面所成角的正弦值.

【答案】1)见解析;(2

【解析】

1)取的中点的中点,连接,可知三点共线,三点共线.,因而可得的重心,再利用线面平行的判定,及可证出;

2)根据条件,通过面面垂直的性质,证出平面,建立空间直角坐标系,标点,求及平面的法向量为,通过利用空间向量法求出线面角.

1)如图,取的中点的中点,连接.

由已知易得三点共线,三点共线.

因为,所以.

的重心,所以

所以.

因为平面平面

所以平面.

2)在中,因为的中点,所以.

因为平面平面,平面平面平面

所以平面.

由(1)得,.

所以两两垂直,如图,

分别以射线的方向为轴的正方向建立空间直角坐标系.

,因为,所以

所以.

所以.

所以.

设平面的法向量为,则

所以,则,所以可取.

设直线与平面所成的角为,则

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018614日,世界杯足球赛在俄罗斯拉开帷幕,世界杯给俄罗斯经济带来了一定的增长,某纪念商品店的销售人员为了统计世界杯足球赛期间商品的销售情况,随机抽查了该商品商店某天200名顾客的消费金额情况,得到如图频率分布表:将消费顾客超过4万卢布的顾客定义为足球迷”,消费金额不超过4万卢布的顾客定义为“非足球迷”。

消费金额/万卢布

合计

顾客人数

9

31

36

44

62

18

200

(1)求这200名顾客消费金额的中位数与平均数(同一组中的消费金额用该组的中点值作代表;

(2)该纪念品商店的销售人员为了进一步了解这200名顾客喜欢纪念品的类型,采用分层抽样的方法从“非足球迷”,“足球迷”中选取5人,再从这5人中随机选取3人进行问卷调查,则选取的3人中“非足球迷”人数的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该作完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,该作中有题为“李白沽酒”“李白街上走,提壶去买酒。遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒。借问此壶中,原有多少酒?”,如图为该问题的程序框图,若输出的值为0,则开始输入的值为(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCDA1B1C1D1中,已知底面ABCD是菱形,点P是侧棱C1C的中点.

1)求证:AC1∥平面PBD

2)求证:BDA1P

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业要设计制造一批大小、规格相同的长方体封闭水箱,已知每个水箱的表面积为432(每个水箱的进出口所占面积与制作材料的厚度均忽略不计).每个长方体水箱的底面长是宽的2倍.现设每个长方体水箱的底面宽是,用表示每个长方体水箱的容积.

(1)试求函数的解析式及其定义域;

(2)当为何值时,有最大值,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一种抛硬币游戏的规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.

(1)设抛掷5次的得分为,求的分布列和数学期望

(2)求恰好得到分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求fx)的最小正周期T[0π]上的单调增区间;

2)若,求fx)的最值及取最值时的x.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是(

A.”是“”的充分不必要条件

B.为假命题,则均为真命题

C.命题“若,则”的逆否命题是“若,则|”

D.若命题,使得,则,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年非洲猪瘟在东北三省出现,为了进行防控,某地生物医药公司派出技术人员对当地甲乙两个养殖场提供技术服务,方案和收费标准如下:

方案一,公司每天收取养殖场技术服务费40元,对于需要用药的每头猪收取药费2元,不需要用药的不收费;

方案二,公司每天收取养殖场技术服务费120元,若需要用药的猪不超过45头,不另外收费,若需要用药的猪超过45头,超过部分每天收取药费8.

1)设日收费为(单位:元),每天需要用药的猪的数量为,试写出两种方案中 的函数关系式.

2)若该医药公司从101日起对甲养殖场提供技术服务,1031日该养殖场对其中一个猪舍9月份和10月份猪的发病数量进行了统计,得到如下列联表.

9月份

10月份

合计

未发病

40

85

125

发病

65

20

85

合计

105

105

210

根据以上列联表,判断是否有的把握认为猪未发病与医药公司提供技术服务有关.

附:

0.050

0.010

0.001

3.841

6.635

10.828

3)当地的丙养殖场对过去100天猪的发病情况进行了统计,得到如上图所示的条形统计图.依据该统计数据,从节约养殖成本的角度去考虑,若丙养殖场计划结合以往经验从两个方案中选择一个,那么选择哪个方案更合适,并说明理由.

查看答案和解析>>

同步练习册答案