精英家教网 > 高中数学 > 题目详情

若函数f(x)(f(x)≠0)为奇函数,则必有


  1. A.
    f(x)•f(-x)>0
  2. B.
    f(x)•f(-x)<0
  3. C.
    f(x)<f(-x)
  4. D.
    f(x)>f(-x)
B
分析:先根据奇函数的定义可得到f(-x)=-f(x),又因为f(x)•f(-x)=f(x)[-f(x)]=-[f(x)]2<0,从而可判断答案.
解答:∵函数f(x)(f(x)≠0)为奇函数
∴f(-x)=-f(x)
∴f(x)•f(-x)=f(x)[-f(x)]=-[f(x)]2<0
故选B.
点评:本题主要考查函数的基本性质--奇偶性.考查对基础知识的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2+bx+c的对称轴方程为x=2,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•中山一模)已知函数f(x)=
13
x3-ax+b
,其中实数a,b是常数.
(Ⅰ)已知a∈{0,1,2},b∈{0,1,2},求事件A:“f(1)≥0”发生的概率;
(Ⅱ)若f(x)是R上的奇函数,g(a)是f(x)在区间[-1,1]上的最小值,求当|a|≥1时g(a)的解析式;
(Ⅲ)记y=f(x)的导函数为f′(x),则当a=1时,对任意x1∈[0,2],总存在x2∈[0,2]使得f(x1)=f′(x2),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案