精英家教网 > 高中数学 > 题目详情
10.经过两点A(4,2y+1),B(2,-3)的直线的倾斜角为45°,则y的值为(  )
A.-1B.-3C.0D.2

分析 由两点坐标求出直线的斜率,再由斜率等于倾斜角的正切值列式求得y的值.

解答 解:经过两点A(4,2y+1),B(2,-3)的直线的斜率为k=$\frac{-3-2y-1}{2-4}=y+2$.
又直线的倾斜角为45°,
∴y+2=tan45°=1,即y=-1.
故选:A.

点评 本题考查直线的倾斜角,考查了直线倾斜角与斜率的关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.判断下列函数的奇偶性.
(1)y=$\frac{{x}^{2}-x}{x-1}$;
(2)f(x)=(1+x)$\sqrt{\frac{1-x}{1+x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,是函数y=f(x)=sin(ω1x+φ1)和y=g(x)=sin(ω2x+φ2)在一个周期上的图象,为了得到y=f(x)的图象,只要将y=g(x)的图象上所有的点(  )
A.向左平移$\frac{π}{3}$个单位长度.再把所得点的横坐标伸长到原来的2倍.纵坐标不变
B.向左平移$\frac{π}{3}$个单位长度.再把所得点的横坐标缩短到原来的$\frac{1}{2}$倍.纵坐标不变
C.向左平移$\frac{π}{2}$个单位长度.再把所得点的横坐标伸长到原来的2倍.纵坐标不变
D.向左平移$\frac{π}{2}$个单位长度.再把所得点的横坐标缩短到原来的$\frac{1}{2}$倍.纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在半径为R的球内放入5个球,其中有4个球大小相等,两两相外切且均与大球相内切,另一个小球与这四个球均相外切,则这个小球半径为(  )
A.(3-2$\sqrt{2}$)RB.(4-2$\sqrt{3}$)RC.(5-2$\sqrt{6}$)RD.(6-2$\sqrt{7}$)R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)是定义在R上的偶函数,当x∈[0,+∞)时,f(x)是增函数,且f(-1)=0则不等式f(x)<0的解集为(  )
A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(-∞,-1)∪(0,1)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.半径为2cm,圆心角为120°的扇形面积为$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知长方体ABCD-A1B1C1D1中,底面是边长为1的正方形,高为2,则点A1到截面AB1D1的距离是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.随着人们社会责任感与公众意识的不断提高,越来越多的人成为了志愿者.某创业园区对其员工是否为志愿者的情况进行了抽样调查,在随机抽取的10位员工中,有3人是志愿者.
(Ⅰ)在这10人中随机抽取4人填写调查问卷,求这4人中恰好有1人是志愿者的概率P1
(Ⅱ)已知该创业园区有1万多名员工,从中随机调查1人是志愿者的概率为$\frac{3}{10}$,那么在该创业园区随机调查4人,求其中恰有1人是志愿者的概率P2
(Ⅲ)该创业园区的A团队有100位员工,其中有30人是志愿者.若在A团队随机调查4人,则其中恰好有1人是志愿者的概率为P3.试根据(Ⅰ)、(Ⅱ)中的P1和P2的值,写出P1,P2,P3的大小关系(只写结果,不用说明理由).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知A,B,C,D是函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)一个周期内的图象上的四个点,如图所示,$A(\frac{π}{6},0)$,B为y轴上的点,D为图象上的最低点,C为该函数图象的一个对称中心,B与E关于点C对称,$\overrightarrow{ED}$在x轴上的投影为$\frac{π}{12}$,则$f(-\frac{π}{6})$的值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案