精英家教网 > 高中数学 > 题目详情
已知Sn是等比数列{an}的前n项和,an∈N+,a2=30,a1S3=999.
(Ⅰ)求an和;
(Ⅱ)设Sn各位上的数字之和为bn,求数列{bn}的前n项和Tn
分析:(Ⅰ)先利用条件求出首项和公比,求出通项,再代入等比数列的求和公式即可.
(Ⅱ)有(Ⅰ)的结果求出{bn}是等差数列,再代入等差数列的求和公式即可
解答:解:(Ⅰ)设等比数列{an}的公比为q,∵an∈N*∴q>0.
又∵
a2=a1q=30
a1S30=a1(a1+a2+a3)=
a
2
1
(1+q+q2)=999
(4分)
a1=3
q=10
(6分)
∴an=3×10n-1Sn=
3-(1-10n)
1-10
=
10n-1
3
(8分)
(Ⅱ)∵Sn各位上的数字之和为bnSn=
10n-1
3

∴s1=3⇒b1=3=3×1,
s2=33,⇒b2=3+3=6=3×2,
s3=333⇒b3=3+3+3=9=3×3…
∴bn=3n,bn+1-bn=3,∴{bn}是等差数列(10分)
Tn=
n(b1+bn)
2
=
n(3+3n)
2
=
3n2+3n
2
.(12分)
点评:本题主要考查等差数列和等比数列的前n项和公式.考查学生的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知Sn是等比数列{an}的前n项和,a5=-2,a8=16,等S6等于(  )
A、
21
8
B、-
21
8
C、
17
8
D、-
17
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)叙述并证明等比数列的前n项和公式;
(2)已知Sn是等比数列{an} 的前n项和,S3,S9,S6成等差数列,求证:a1+k,a7+k,a4+k(k∈N)成等差数列;
(3)已知Sn是正项等比数列{an} 的前n项和,公比0<q≤1,求证:2Sn+1≥Sn+Sn+2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是等比数列{an}的前n项和,其公比为q,若S3、S9、S6成等差数列.求
(1)q3的值;
(2)求证:a3、a9、a6也成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是等比数列{an}的前n项和,若S3,S9,S6成等差数列,则也成等差数列的是(  )

查看答案和解析>>

同步练习册答案