精英家教网 > 高中数学 > 题目详情
10.已知抛物线与y轴交于点A(0,-3),与x轴的两个交点的横坐标为方程x2+2x-3=0的两根,求它的解析式、顶点坐标和对称轴方程.

分析 利用已知条件设出抛物线方程,求出方程的根,然后求解函数的解析式,顶点坐标和对称轴方程.

解答 解:抛物线与y轴交于点A(0,-3),
设抛物线方程为:y=ax2+bx-3,
解方程x2+2x-3=0得x1=1,x2=-3.
根据题意,又设抛物线解析式为y=a(x-1)(x+3)=ax2+2ax-3a,
可得a=1,b=2
∴解析式为y=x2+2x-3=(x+1)2-4.
顶点坐标为(-1,-4),对称轴为x=-1.

点评 此题考查了运用待定系数法求函数解析式进而求解,二次函数的简单性质的应用,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届广东华南师大附中高三综合测试一数学(理)试卷(解析版) 题型:选择题

设全集,集合,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱锥A-BOC中,AO⊥平面COB,∠OAB=∠OAC=$\frac{π}{6}$,AB=AC=2,BC=$\sqrt{2}$,D,E分别为AB,OB的中点.
(1)求证:CO⊥平面AOB;
(2)在线段CB上是否存在一点F,使得平面DEF∥平面AOC,若存在,试确定F的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x-1+$\frac{a}{{e}^{x}}$(a∈R,e为自然对数的底数).
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-1与曲线y=f(x)相切,求l的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法中正确的是(  )
A.命题“?x∈R,ex>0”的否定是“?x∈R,ex>0”
B.命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题
C.“x2+2x≥ax在x∈[1,2]上恒成立”?“对于x∈[1,2],有(x2+2x)min≥(ax)max
D.命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知点A是直线y=2x+1与反比例函数y=$\frac{k}{x}$(x>0)图象的交点,且点A的横坐标为1.
(1)求k的值;
(2)如图1,双曲线y=$\frac{k}{x}$(x>0)上一点M,若S△AOM=4,求点M的坐标;
(3)如图2所示,若已知反比例函数y=$\frac{k}{x}$(x>0)图象上一点B(3,1),点P是直线y=x上一动点,点Q是反比例函数y=$\frac{k}{x}$(x>0)图象上另一点,是否存在以P、A、B、Q为顶点的平行四边形,若存在,请直接写出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.x,y∈R,f(xy)=f(x)f(y),其定义域、值域都为正,x>1时,f(x)>1,求其单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{a}{x}$-|x-a|,(a>0,x>0),
(1)求f(x)的单调区间;
(2)当x∈(0,4]时,若f(x)≥x-3恒成立,求a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)证明函数f(x)=$\sqrt{x+1}$在定义域上是单调增函数;
(2)用定义判断f(x)=1+$\frac{1}{x-2}$在区间(2,+∞)上的单调性.

查看答案和解析>>

同步练习册答案