【题目】某校为了鼓励学生热心公益,服务社会,成立了“慈善义工社”.2017年12月,该校“慈善义工社”为学生提供了4次参加公益活动的机会,学生可通过网路平台报名参加活动.为了解学生实际参加这4次活动的情况,该校随机抽取100名学生进行调查,数据统计如下表,其中“√”表示参加,“×”表示未参加.
(Ⅰ)从该校所有学生中任取一人,试估计其2017年12月恰参加了2次学校组织的公益活动的概率;
(Ⅱ)若在已抽取的100名学生中,2017年12月恰参加了1次活动的学生比4次活动均未参加的学生多17人,求的值;
(Ⅲ)若学生参加每次公益活动可获得10个公益积分,试估计该校4000名学生中,2017年12月获得的公益积分不少于30分的人数.
科目:高中数学 来源: 题型:
【题目】某读者协会为了了解该地区居民睡前看书的时间情况,从该地区睡前看书的居民中随机选取了n人进行调查,现将调查结果进行统计得到如图所示的频率分布直方图.则下列说法正确的是( )
A. 睡前看书时间介于40~50分钟的频率为0.03
B. 睡前看书时间低于30分钟的频率为0.67
C. 若n=1000,则可估计本次调查中睡前看书时间介于30~50分钟的有67人
D. 若n=1000,则可估计本次调查中睡前看书时间介于20~40分钟的有600人
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)为定义在R上的偶函数,当x≥0时,有f(x+1)=-f(x),且当x∈[0,1)时,f(x)=log2(x+1),给出下列命题
①f(2014)+f(-2015)=0;
②函数f(x)在定义域上是周期为2的函数;
③直线y=x与函数f(x)的图象有2个交点;
④函数f(x)的值域为(-1,1).
其中正确的是( )
A. ①② B. ②③
C. ①④ D. ①②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为F,直线与x轴的交点为P,与抛物线的交点为Q,且.
(1)求抛物线的方程;
(2)过F的直线l与抛物线相交于A,D两点,与圆相交于B,C两点(A,B两点相邻),过A,D两点分别作抛物线的切线,两条切线相交于点M,求△ABM与△CDM的面积之积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义域为R的周期函数,最小正周期为2,且
f(1+x)=f(1-x),当-1≤x≤0时,f(x)=-x.
(1)判断f(x)的奇偶性;
(2)试求出函数f(x)在区间[-1,2]上的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了鼓励学生热心公益,服务社会,成立了“慈善义工社”.2017年12月,该校“慈善义工社”为学生提供了4次参加公益活动的机会,学生可通过网路平台报名参加活动.为了解学生实际参加这4次活动的情况,该校随机抽取100名学生进行调查,数据统计如下表,其中“√”表示参加,“×”表示未参加.
根据表中数据估计,该校4000名学生中约有120名这4次活动均未参加.
(Ⅰ)求的值;
(Ⅱ)从该校4000名学生中任取一人,试估计其2017年12月恰参加了2次学校组织的公益活动的概率;
(Ⅲ)已知学生每次参加公益活动可获得10个公益积分,任取该校一名学生,记该生2017年12月获得的公益积分为,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在(0,+∞)上的单调函数f(x),x∈(0,+∞),f[f(x)﹣lnx]=1,则方程f(x)﹣f′(x)=1的解所在区间是 ( )
A. (2,3) B. C. D. (1,2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车因绿色、环保、健康的出行方式,在国内得到迅速推广.最近,某机构在某地区随机采访了10名男士和10名女士,结果男士、女士中分别有7人、6人表示“经常骑共享单车出行”,其他人表示“较少或不选择骑共享单车出行”.
(1)从这些男士和女士中各抽取一人,求至少有一人“经常骑共享单车出行”的概率;
(2)从这些男士中抽取一人,女士中抽取两人,记这三人中“经常骑共享单车出行”的人数为,求的分布列与数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com