精英家教网 > 高中数学 > 题目详情

设函数f(x)=数学公式(a>0,且a≠1),[m]表示不超过实数m的最大整数,则实数[f(x)-数学公式]+[f(-x)-数学公式]的值域是


  1. A.
    [-1,1]
  2. B.
    [0,1]
  3. C.
    {-1,0}
  4. D.
    {-1,1}
C
分析:化简函数f(x)=,对x的正、负、和0分类讨论,求出[f(x)-]+[f(-x)-]的值,从而得到所求.
解答:f(x)==1-
∴f(x)-=-
若a>1
当x>0 则 0≤f(x)- 从而[f(x)]=0
当x<0 则-<f(x)-<0 从而[f(x)]=-1
当x=0 f(x)-=0 从而[f(x)]=0
所以:当x=0 y=[f(x)-]+[f(-x)-]=0
当x不等于0 y=[f(x)-]+[f(-x)-]=0-1=-1
同理若0<a<1时,当x=0 y=[f(x)-]+[f(-x)-]=0
当x不等于0 y=[f(x)-]+[f(-x)-]=0-1=-1
所以,y的值域:{0,-1}
故选C.
点评:本题考查函数的值域,函数的单调性及其特点,考查学生分类讨论的思想,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=T•f(x)成立.
(1)函数f(x)=x是否属于集合M?说明理由;
(2)设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=ax∈M;
(3)若函数f(x)=sinkx∈M,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=logax(a>0且a≠1),若f(x1•x2•…•x2009)=8,则f(x12)+f(x22)+…+f(x20082)+f(x20092)的值等于
16
16

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南通三模)设函数f(x)=ax3-(a+b)x2+bx+c,其中a>0,b,c∈R.
(1)若f′(
13
)
=0,求函数f(x)的单调增区间;
(2)求证:当0≤x≤1时,|f'(x)|≤max{f'(0),f'(1)}.(注:max{a,b}表示a,b中的最大值)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)设函数f(x)=x3-4x+a(0<a<2)有三个零点x1、x2、x3,且x1<x2<x3,则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax3-(a+b)x2+bx+c,其中a>0.b,c∈R.
(1)计算f′(
1
3
);
(2)若x=
1
3
为函数f(x)的一个极值点,求f(x)的单调区间;
(3)设M表示f′(0)与f′(1)两个数中的最大值,求证:当0≤x≤1时,|f′(x)|≤M.

查看答案和解析>>

同步练习册答案