精英家教网 > 高中数学 > 题目详情
在四面体PABC中,PAPBPC两两垂直,设PAPBPCa,则点P到平面ABC的距离为________.
根据题意,可建立如图所示的空间直角坐标系Pxyz,则P(0,0,0),A(a,0,0),B(0,a,0),C(0,0,a).过点PPH⊥平面ABC,交平面ABC于点H,则PH的长即为点P到平面ABC的距离.

PAPBPC,∴H为△ABC的外心.
又∵△ABC为正三角形,∴H为△ABC的重心,可得H点的坐标为.
PH.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,SD=AD=AB,E是SA的中点.

(1)求证:平面BED⊥平面SAB.
(2)求直线SA与平面BED所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,,底面为梯形,,且.

(1)求证:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在中,,点在边上,设,过点,作。沿翻折成使平面平面;沿翻折成使平面平面

(1)求证:平面
(2)是否存在正实数,使得二面角的大小为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,平面底面的中点.

(1)求证://平面
(2)求与平面BDE所成角的余弦值;
(3)线段PC上是否存在一点M,使得AM⊥平面PBD,如果存在,求出PM的长度;如果不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)如图:四棱锥P—ABCD中,底面ABCD

是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.
(1)证明:无论点E在BC边的何处,都有PE⊥AF;
(2)当BE等于何值时,PA与平面PDE所成角的大小为45°. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在空间直角坐标系中有直三棱柱ABC­A1B1C1CACC1=2CB,则直线BC1与直线AB1夹角的余弦值为(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间直角坐标系中,点(-2, 1, 9)关于x轴对称的点的坐标是
A.(-2, 1, 9)B.(-2, -1, -9)C.(2, -1, 9)D.( 2, 1, -9)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体中,已知DA=DC=4,DD1=3,求异面直线A1B与B1C所成角的余弦值。

查看答案和解析>>

同步练习册答案