精英家教网 > 高中数学 > 题目详情
2、若函数y=f(x)在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是(  )
分析:先由零点的存在性定理可判断D不正确;结合反例“f(x)=x(x-1)(x+1)在区间[-2,2]上满足f(-2)f(2)<0,但其存在三个解{-1,0,1}”可判定B不正确;结合反例“f(x)=(x-1)(x+1)在区间[-2,2]上满足f(-2)f(2)>0,但其存在两个解{-1,1}”可判定A不正确,进而可得到答案.
解答:解:由零点存在性定理可知选项D不正确;
对于选项B,可通过反例“f(x)=x(x-1)(x+1)在区间[-2,2]上满足f(-2)f(2)<0,但其存在三个解{-1,0,1}”推翻;
同时选项A可通过反例“f(x)=(x-1)(x+1)在区间[-2,2]上满足f(-2)f(2)>0,但其存在两个解{-1,1}”;
故选C.
点评:本题主要考查零点存在定理的理解和认识.考查对知识理解的细腻程度和认识深度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知变量t,y满足关系式loga
t
a3
=logt
y
a3
,a>0且a≠1,t>0且t≠1,变量t,x满足关系式t=ax,变量y,x满足函数关系式y=f(x).
(1)求函数y=f(x)表达式;
(2)若函数y=f(x)在[2a,3a]上具有单调性,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
38
x2-2x+2+ln x.
(Ⅰ)求函数y=f(x)的单调区间;
(Ⅱ)若函数y=f(x)在[em,+∞)(m∈Z)上有零点,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+2ax-3a.
(Ⅰ)若函数y=f(x)在(-∞,1)上是增函数,求实数a的取值范围;
(Ⅱ)当函数f(x)在[1,2]上的最大值为4时,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(2x)=x2-2ax+3
(1)求函数y=f(x)的解析式
(2)若函数y=f(x)在[
12
,8]上的最小值为-1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)在(0,+∞)上的导函数为f′(x),且不等式xf′(x)>f(x)恒成立,又常数a,b满足a>b>0,则下列不等式一定成立的是
 

①bf(a)>af(b);②af(a)>bf(b);③bf(a)<af(b);④af(a)<bf(b).

查看答案和解析>>

同步练习册答案