精英家教网 > 高中数学 > 题目详情
本小题満分15分)
已知为直角梯形,//,, , , 平面

(1)若异面直线所成的角为,且,求;
(2)在(1)的条件下,设的中点,能否在上找到一点,使?
(3)在(2)的条件下,求二面角的大小.
解:建立如图所示的空间坐标系

,则

由已知得:
,即

(2)设能在找到一点,使,设,由(1)知,则,又有,,
即存在点满足要求。
(3)
;平面平面,
所以平面平面,故二面角的大小为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四面体ABCD中,O,E分别为BD,BC的中点,CA=CB=CD=BD=2,AB=AD=

(1)求证:AO⊥平面BCD;
(2)求点E到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题满分12分)
如图,垂直于矩形所在的平面,分别是的中点.

(1)求证:平面
(2)求证:平面平面
(3)求四面体的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题15分)
如图在三棱锥P-ABC中,PA 分别在棱

(1)求证:BC
(2)当D为PB中点时,求AD与平面PAC所成的角的余弦值;
(3)是否存在点E,使得二面角A-DE-P为直二面角,并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
如图,已知,

(Ⅰ)求证:;          
(Ⅱ) 若,求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
如图,斜三棱柱-ABC的底面是边长为2的正三角形,顶点在底面上的射影是△ABC的中心,与AB的夹角是45°

1)求证:⊥平面
(2)求此棱柱的侧面积 。 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题


.四面体的外接球球心在上,且,在外接球面上两点间的球面距离是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

( (本小题满分12分)
如图,在长方体中,
E、F分别是棱BC, 上的点,CF=AB=2CE,.

(1)证明AF⊥平面
(2)求平面与平面FED所成的角的余弦值.

查看答案和解析>>

同步练习册答案