【题目】如图,已知长方形中, 的中点,将沿折起,使得平面平面.
(1)求证: ;
(2)设,当为何值时,二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】某小区要建一个八边形的休闲区,如图所示,它的主要造型平面图是由两个相同的矩形和构成的面积为的十字形区域.计划在正方形上建一个花坛,造价为4200元/,在四个相同的矩形(图中阴影部分)上铺设花岗岩地面,造价为210元/,再在四个等腰直角三角形上铺设草坪,造价为80元/.求当的长度为多少时,建设这个休闲区的总价最低.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设x=1与x=2是函数f(x)=aln x+bx2+x的两个极值点.
(1)试确定常数a和b的值;
(2)判断x=1,x=2是函数f(x)的极大值点还是极小值点,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】分层抽样是将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,组成一个样本的抽样方法;在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带钱多少的比例进行交税,问三人各应付多少税?则下列说法错误的是( )
A. 甲应付钱 B. 乙应付钱
C. 丙应付钱 D. 三者中甲付的钱最多,丙付的钱最少
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年2月25日第23届冬季奥运会在韩国平昌闭幕,中国以1金6银2铜的成绩结束本次冬奥会的征程.某校体育爱好者协会在高三年级某班进行了“本届冬奥会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),按分层抽样从被调查的学生中随机抽取了11人,具体的调查结果如下表:
某班 | 满意 | 不满意 |
男生 | 2 | 3 |
女生 | 4 | 2 |
(Ⅰ)若该班女生人数比男生人数多4人,求该班男生人数和女生人数
(Ⅱ)在该班全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;
(Ⅲ)若从该班调查对象中随机选取2人进行追踪调查,记选中的2人中对“本届冬奥会中国队表现”满意的人数为,求随机变量的分布列及其数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com