【题目】如图,在底面是菱形的四棱锥P﹣ABCD中, E、F分别为PD、AB的中点,△PAB为等腰直角三角形,PA⊥平面ABCD,PA=1.
(1)求证:直线AE∥平面PFC;
(2)求证:PB⊥FC.
【答案】(1)见解析;(2)见解析.
【解析】试题分析:(1)取PC的中点M,连接EM,FM.利用三角形中位线定理可得ME平行且等于CD,又AF平行且等于CD,可得AF平行且等于EM,再利用平行四边形的判定与性质定理可得AE∥FM,利用线面平行的判定定理即可证明AE∥平面PFC.(2)由已知利用线面垂直的性质可证PA⊥FC,利用菱形的性质,余弦定理,勾股定理可证CF⊥BF,进而可证CF⊥平面PAB,利用线面垂直的性质可证PB⊥FC.
试题解析:
(1)取PC的中点M,连接EM,FM.
又E点为PD的中点,∴MECD,
又AFCD,∴AFEM,
∴四边形AFME是平行四边形,
∴AE∥FM,又AE平面PFC,FM平面PFC,
∴直线AE∥平面PFC.
(2)∵△PAB为等腰直角三角形,PA⊥平面ABCD,PA=1.
∴PA⊥FC,PA⊥AB,PA=AB=1,
∵F为AB的中点,BF=,
∴在底面是菱形的四棱锥P﹣ABCD中,,可得:BC=1,CF=,
∴△BFC中,CF2+BF2=BC2,可得:CF⊥BF,
又∵PA∩BA=A,
∴CF⊥平面PAB,
∵PB平面PAB,
∴PB⊥FC.
科目:高中数学 来源: 题型:
【题目】如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点。那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线顶点在原点,焦点在轴上,又知此抛物线上一点到焦点的距离为6.
(1)求此抛物线的方程;
(2)若此抛物线方程与直线相交于不同的两点、,且中点横坐标为2,求的值.
【答案】(1);(2)2.
【解析】试题分析:
(1)由题意设抛物线方程为,则准线方程为,解得,即可求解抛物线的方程;
(2)由消去得,根据,解得且,得到,即可求解的值.
试题解析:
(1)由题意设抛物线方程为(),其准线方程为,
∵到焦点的距离等于到其准线的距离,∴,∴,
∴此抛物线的方程为.
(2)由消去得,
∵直线与抛物线相交于不同两点、,则有
解得且,
由,解得或(舍去).
∴所求的值为2.
【题型】解答题
【结束】
20
【题目】如图,在四棱锥中,底面是平行四边形, ,侧面底面, , , , 分别为, 的中点,点在线段上.
(1)求证: 平面;
(2)如果三棱锥的体积为,求点到面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=aln(x2+1)+bx存在两个极值点x1 , x2 .
(1)求证:|x1+x2|>2;
(2)若实数λ满足等式f(x1)+f(x2)+a+λb=0,试求λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面内两点A(4,0),B(0,2)
(1)求过P(2,3)点且与直线AB平行的直线l的方程;
(2)设O(0,0),求△OAB外接圆方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的两个焦点分别为, ,过作椭圆长轴的垂线交椭圆于点,若为等腰直角三角形,则椭圆的离心率是( )
A. B. C. D.
【答案】C
【解析】试题分析:解:设点P在x轴上方,坐标为(),∵为等腰直角三角形,∴|PF2|=|F1F2|, ,故选D.
考点:椭圆的简单性质
点评:本题主要考查了椭圆的简单性质.椭圆的离心率是高考中选择填空题常考的题目.应熟练掌握圆锥曲线中a,b,c和e的关系
【题型】单选题
【结束】
8
【题目】“”是“对任意的正数, ”的( )
A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是边长为2的正方形,
PA=AD,F为PD的中点.
(1)求证:AF⊥平面PDC;
(2)求直线AC与平面PCD所成角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com