精英家教网 > 高中数学 > 题目详情
设{an}是公差大于0的等差数列,bn=(
1
2
)an
,已知b1+b2+b3=
21
8
,b1b2b3=
1
8

(1)求证:数列{bn}是等比数列;
(2)求等差数列{an}的通项an
分析:(1)要证明等比数列,可根据等比数列的定义,验证从第二项起,每一项与前一项之比等于常数即可;
(2)根据数列{bn}是等比数列,可先求数列{bn}的通项,进而根据bn=(
1
2
)an
,可求数列{an}的通项an
解答:(1)证明:设{an}的公差为d.
bn+1
bn
=(
1
2
)an+1-an=(
1
2
)d
为常数,又bn>0.
即{bn}为以(
1
2
)a1
为首项,公比为(
1
2
)d
的等比数列.-------------------------------------(6分)
(2)由b2=
1
2
得,
b1+b3=
17
8
b1b3=
1
4
b1=
1
8
b3=2
or
b3=
1
8
b1=2
,由{bn}公比为q=(
1
2
)d∈(0,1)

所以b1>b3,所以
b3=
1
8
b1=2
-----------------------------------------------------(12分)
所以bn=(
1
2
)2n-3
,即an=2n-3,n∈N*--------------------------------------(14分)
点评:本题的考点是等差数列与等比数列的综合,主要考查等差数列与等比数列的通项及性质,关键是正确运用等比数列的定义,利用等比数列的通项公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{an}是公差大于零的等差数列,已知a1=2,a3=a22-10.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设{bn}是以函数y=4sin2πx的最小正周期为首项,以3为公比的等比数列,求数列{an-bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公差大于零的等差数列,已知a1=2,a3=a2-10.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设{bn}是以函数y=4sin2πx+
12
)-1的最小正周期为首项,以3为公比的等比数列,求数列{an-bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公差大于零的等差数列,已知a1=2,a3=a22-10.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设{bn}是以函数y=4sin2(πx+
1
2
)-1的最小正周期为首项,以3为公比的等比数列,求数列{an-bn}的前n项和Sn
(Ⅲ)若f(n)=
2
2n+a1
+
2
2n+a2
+…+
2
2n+an
(n∈N,且n≥2,求函数f(n)的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省青岛市高三(上)期中数学试卷(理科)(解析版) 题型:解答题

设{an}是公差大于零的等差数列,已知a1=2,
(Ⅰ)求{an}的通项公式;
(Ⅱ)设{bn}是以函数y=4sin2πx的最小正周期为首项,以3为公比的等比数列,求数列{an-bn}的前n项和Sn

查看答案和解析>>

同步练习册答案