【题目】一个盒子中装有2个红球,4个白球,除颜色外,它们的形状、大小、质量等完全相同
(1)采用不放回抽样,先后取两次,每次随机取一个球,求恰好取到1个红球,七个白球的概率;
(2)采用放回抽样,每次随机抽取一球,连续取3次,求至少有1次取到红球的概率.
【答案】(1)(2)
【解析】试题分析:(1)不放回的先后取两次,第一次有6种不同的取法,第二次有5种不同的取法,所以一共有6×5=30种不同的取法种数,若恰第一次取红球,第二次取白球共有2×4=8种,若第一次取白球,第二次取红球,共有4×2=8种,所以恰好取到一个红球的种数为16种,所以概率为 ;(2)若放回抽取,每次取一球,连续3次,则不同的取法种数为6×6×6=216种,若3次都取到白球,共有 4×4×4=64种,所以根据对立事件概率加法公式可知,至少有1次取得红球的概率为.
试题解析:(1)恰好取到1个红球,1个白球的概率为
(2)采用放回抽样,每次取到红球的概率,∴至少有1次取到红球的概率为.
科目:高中数学 来源: 题型:
【题目】已知棱长为l的正方体中,E,F,M分别是AB、AD、的中点,又P、Q分别在线段上,且,设面面MPQ=,则下列结论中不成立的是( )
A.面ABCD
B.AC
C.面MEF与面MPQ不垂直
D.当x变化时,不是定直线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的中心在坐标原点,焦点在轴上,焦点到短轴端点的距离为2,离心率为.
(Ⅰ)求该椭圆的方程;
(Ⅱ)若直线与椭圆交于, 两点且,是否存在以原点为圆心的定圆与直线相切?若存在求出定圆的方程;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个结论:
(1)如果的展开式中各项系数之和为128,则展开式中的系数是-21;
(2)用相关指数来刻画回归效果, 的值越大,说明模型的拟合效果越差;
(3)若是上的奇函数,且满足,则的图象关于对称;
(4)一个篮球运动员投篮一次得3分的概率为,得2分的概率为,不得分的概率为,且,已知他投篮一次得分的数学期望为2,则的最小值为;
其中正确结论的序号为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。设购进A掀电脑x台,这100台电脑的销售总利润为y元。
①求y与x的关系式;
②该商店购进A型、B型各多少台,才能使销售利润最大?
(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台。若商店保持两种电脑的售价不变,请你以上信息及(2)中的条件,设计出使这100台电脑销售总利润最大的进货方案。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确立下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位: )和年利润(单位:千元)的影响.对近年的宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.
表中
(Ⅰ)根据散点图判断, 与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立关于的回归方程;
(Ⅲ)已知这种产品的年利率与的关系为.根据(Ⅱ)的结果回答下列问题:
(i)年宣传费时,年销售量及利润的预报值是多少?
(ii)年宣传费为何值时,年利率的预报值最大?
附:对于一组数据……,其回归线的斜率和截距的最小二乘法估计分别为: ,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com