精英家教网 > 高中数学 > 题目详情
若f(x)=在点x=0处连续,则f(0)=______________________.

解析:∵f(x)在点x=0处连续,

    ∴f(0)=f(x).

    f(x)=

    ==.

答案:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•潍坊一模)设函数f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx
,其中a≠0.
( I )若函数y=g(x)图象恒过定点P,且点P在y=f(x)的图象上,求m的值;
(Ⅱ)当a=8时,设F(x)=f′(x)+g(x),讨论F(x)的单调性;
(Ⅲ)在(I)的条件下,设G(x)=
f(x),x≤1
g(x),x>1
,曲线y=G(x)上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且该三角形斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:潍坊一模 题型:解答题

设函数f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx
,其中a≠0.
( I )若函数y=g(x)图象恒过定点P,且点P在y=f(x)的图象上,求m的值;
(Ⅱ)当a=8时,设F(x)=f′(x)+g(x),讨论F(x)的单调性;
(Ⅲ)在(I)的条件下,设G(x)=
f(x),x≤1
g(x),x>1
,曲线y=G(x)上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且该三角形斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省黄山市屯溪一中高三(上)第三次月考数学试卷(文科)(解析版) 题型:解答题

已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为,若x=时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:2007年山东省淄博市高考数学一模试卷(理科)(解析版) 题型:解答题

已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为,若x=时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列叙述:①若f(x)在x0处可导,则f(x)在x=x0处连续;②若y=f(x)在x=x0处不可导,则f(x)在x=x0处一定不连续;③若函数y=f(x)在x=x0处连续,则f(x)在x0处可导;④若函数y=f(x)在x=x0处不连续,则f(x)在点x=x0处一定不可导.其中正确的是

A.①③           B.①②            C.③④            D.①④

查看答案和解析>>

同步练习册答案