精英家教网 > 高中数学 > 题目详情

【题目】设(1-x)na0a1xa2x2+…+anxnn∈N*n≥2.

(1)设n=11,求|a6|+|a7|+|a8|+|a9|+|a10|+|a11|的值;

(2)设Smb0b1b2+…+bm(m∈N,mn-1),求|的值.

【答案】(1);(2).

【解析】

(1)由二项式定理可得ak=(﹣1)k,再由二项式系数的性质,可得所求和为210

(2)由组合数的阶乘公式可得bk=(﹣1)k+1,再由组合数的性质,可得当1≤kn﹣1时,bk=(﹣1)k+1(﹣1)k+1)=(﹣1)k1(﹣1)k,讨论m=01≤mn﹣1时,计算化简即可得到所求值.

(1)由二项式定理可得ak=(﹣1)k

n=11时,|a6|+|a7|+|a8|+|a9|+|a10|+|a11|

)=210=1024;

(2)bkak+1=(﹣1)k+1(﹣1)k+1

1≤kn﹣1时,bk=(﹣1)k+1(﹣1)k+1

=(﹣1)k+1(﹣1)k+1(﹣1)k1(﹣1)k

m=0时,||=||=1;

1≤mn﹣1时,Smb0+b1+b2+…+bm=﹣1[(﹣1)k1(﹣1)k]

=﹣1+1﹣(﹣1)m(﹣1)m

即有||=1.

综上可得,||=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是定义在上的偶函数,对任意,都有,且当时,.在区间内关于的方程恰有个不同的实数根,则实数的取值范围是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为F1(-c,0),F2(c,0),直线交椭圆E于A,B两点,△ABF1的周长为16,△AF1F2的周长为12.

(1)求椭圆E的标准方程与离心率;

(2)若直线l与椭圆E交于C,D两点,且P(2,2)是线段CD的中点,求直线l的一般方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海轮以每小时30海里的速度航行,在点测得海面上油井在南偏东,海轮向北航行40分钟后到达点,测得油井在南偏东,海轮改为北偏东的航向再行驶80分钟到达点,则两点的距离为(单位:海里)

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某观测站在目标的南偏西方向,从出发有一条南偏东走向的公路,在处测得与相距的公路处有一个人正沿着此公路向走去,走到达,此时测得距离为,若此人必须在分钟内从处到达处,则此人的最小速度为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,底面ABC.DEN分别为棱PAPCBC的中点,M是线段AD的中点,.

1)求证:平面BDE

2)求二面角C-EM-N的正弦值.

3)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆过点,离心率为.分别是椭圆的上、下顶点,是椭圆上异于的一点.

1)求椭圆的方程;

2)若点在直线上,且,求的面积;

3)过点作斜率为的直线分别交椭圆于另一点,交轴于点,且点在线段上(不包括端点),直线与直线交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:

赔付金额()

0

1 000

2 000

3 000

4 000

车辆数()

500

130

100

150

120

(1)若每辆车的投保金额均为2800,估计赔付金额大于投保金额的概率.

(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知梯形如图(1)所示,其中 ,四边形是边长为的正方形,现沿进行折叠,使得平面平面,得到如图(2)所示的几何体.

(Ⅰ)求证:平面平面

(Ⅱ)已知点在线段上,且平面,求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案