精英家教网 > 高中数学 > 题目详情
10.设命题p:$\frac{2x}{x-1}$<1,命题q:x2-(2a+1)x+a(a+1)<0,若¬p是¬q的充分不必要条件,求实数a的取值范围.

分析 求出命题p,q的等价条件,结合充分条件和必要条件的定义建立不等式关系进行求解即可.

解答 解:由$\frac{2x}{x-1}$<1得$\frac{2x}{x-1}$-1=$\frac{x+1}{x-1}$<0,解之得-1<x<1…(3分)
由x2-(2a+1)x+a(a+1)<0即(x-a)[x-(a+1)]<0
解得a<x<a+1…(6分)
因为¬p是¬q的充分不必要条件,由命题的等价性知,q是p的充分不必要条件,
即p是q的必要不充分条件…(9分)
则$\left\{\begin{array}{l}{a≥-1}\\{a+1≤1}\end{array}\right.$,即-1≤a≤0,
则a的取值范围为:[-1,0]…(12分)

点评 本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将¬p是¬q的充分不必要条件,转化为q是p的充分不必要条件是解决本题的关键,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2+ax+2;
(1)当a=-1时,求函数f(x)的单调区间.
(2)若函数f(x)在[-5,5]上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,既是偶函数又是(0,+∞)上单调递减的函数是(  )
A.$y=\frac{1}{x}$B.y=x3C.y=|x|D.$y={(\frac{{\sqrt{2}}}{2})^{|x|}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC中,$\overrightarrow{AB}=4\overrightarrow i+3\overrightarrow j$,$\overrightarrow{AC}=-3\overrightarrow i+4\overrightarrow j$,其中$\overrightarrow i、\overrightarrow j$是基本单位向量,则△ABC的面积为$\frac{25}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则乙楼的高是(  )
A.$\frac{40\sqrt{3}}{3}$B.20$\sqrt{3}$C.40D.10$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知平面区域D由以P(1,2)、R(3,5)、Q(-3,4)为顶点的三角形内部和边界组成.
(1)设点(x,y)在区域D内变动,求目标函数 z=2x+y的最小值;
(2)若在区域D内有无穷多个点(x,y)可使目标函数z=mx+y(m<0)取得最小值,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知全集U中有25个元素,集合A中有12个元素,集合B中有17个元素,A∩B中有8个元素,则∁UA∩∁UB中元素的个数是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数;1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{an}为“斐波那契数列”.那么$\frac{{a}_{1}^{2}+{a}_{2}^{2}+{a}_{3}^{2}+{a}_{4}^{2}+…+{a}_{100}^{2}}{{a}_{100}}$是斐波那契数列中的第101项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,直线AB∥CD∥EF,若AC=3,CE=4,则$\frac{BD}{BF}$的值是(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

同步练习册答案