【题目】如图1,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点,将△ABE沿BE折起到△A1BE的位置,如图2.
图1 图2
(1)证明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.
【答案】(1) 见解析;(2)
【解析】试题分析:(1)折起后, 根据线面垂直的判定定理可得平面,即可证明平面;(2)若平面平面,根据(1)可得 两两垂直,以 建立空间坐标系,利用向量垂直数量积为零,分别求出平面与平面的法向量,根据空间向量夹角余弦公式可得结果.
试题解析:(1) 在题图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD= AD∥BC,
所以BE⊥AC,BE∥CD,
即在题图2中,BE⊥OA1,BE⊥OC,且OA1∩OC=O,
从而BE⊥平面A1OC,
又CD∥BE,
所以CD⊥平面A1OC.
(2)解:因为平面A1BE⊥平面BCDE,
又由(1)知BE⊥OA1,BE⊥OC,
所以∠A1OC为二面角A1BEC的平面角,
所以∠A1OC=.
如图,以O为原点,建立空间直角坐标系,
因为A1B=A1E=BC=ED=1,
BC∥ED,
所以B
(,0,0),E(- ,0,0),
A1(0,0, ),C(0, ,0),
得=(-, ,0), =(0, ,- ),
= (-,0,0).
设平面A1BC的法向量n1=(x1,y1,z1),
平面A1CD的法向量n2=(x2,y2,z2),平面A1BC与平面A1CD夹角为θ,
则
得
取n1=(1,1,1);
得
取n2=(0,1,1),
从而cos θ=|cos<n1,n2>|= =,
即平面A1BC与平面A1CD夹角的余弦值为.
科目:高中数学 来源: 题型:
【题目】已知(,且,)是定义在区间上的奇函数,
(1)求的值和实数的值;
(2)判断函数在区间上的单调性,并说明理由;
(3)若且成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示,甲的成绩中有一个数的个位数字模糊,在茎叶图中用表示.(把频率当作概率).
(1)假设,现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?
(2)假设数字的取值是随机的,求乙的平均分高于甲的平均分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某校随机抽取200名学生,获得了他们一周课外阅读时间(单位:h)的数据,整理得到数据的频数分布表和频率分布直方图(如图).
编 号 | 分 组 | 频 数 |
1 | [0,2) | 12 |
2 | [2,4) | 16 |
3 | [4,6) | 34 |
4 | [6,8) | 44 |
续 表
编 号 | 分 组 | 频 数 |
5 | [8,10) | 50 |
6 | [10,12) | 24 |
7 | [12,14) | 12 |
8 | [14,16) | 4 |
9 | [16,18] | 4 |
合计 | 200 |
(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12 h的概率;
(2)求频率分布直方图中的a,b的值;
(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的200名学生该周课外阅读时间的平均数在第几组.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把单位正方体的六个面分别染上6种颜色,并画上个数不同的金鸡,各面的颜色与鸡的个数对应如表:
面上所染颜色 | 红 | 黄 | 蓝 | 青 | 紫 | 绿 |
该面上的金鸡个数 | 1 | 2 | 3 | 4 | 5 | 6 |
取同样的4个上述的单位正方体拼成一个如图所示的水平放置的长方体.则这个长方体的下底面总计画有______个金鸡
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车是城市慢行系统的一种模式创新,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数,其中 是新样式单车的月产量(单位:件),利润总收益总成本.
(1)试将自行车厂的利润元表示为月产量的函数;
(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为的函数是奇函数.
(1) 求实数的值;
(2) 判断并用定义证明该函数在定义域上的单调性;
(3) 若方程在内有解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两人各有个材质、大小、形状完全相同的小球,甲的小球上面标有五个数字,乙的小球上面标有五个数字.把各自的小球放入两个不透明的口袋中,两人同时从各自的口袋中随机摸出个小球.规定:若甲摸出的小球上的数字是乙摸出的小球上的数字的整数倍,则甲获胜,否则乙获胜.
(1)写出基本事件空间;
(2)你认为“规定”对甲、乙二人公平吗?说出你的理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com