【题目】设数列的前项的和为且数列满足且对任意正整数都有成等比数列.
(1)求数列的通项公式.
(2)证明数列为等差数列.
(3)令问是否存在正整数使得成等比数列?若存在,求出的值,若不存在,说明理由.
【答案】(1)(2)见证明;(3)见证明
【解析】
(1)利用项和公式求数列的通项公式.(2)由题得,,即,再求出,再利用等差数列的定义证明数列为等差数列.(3) 先求出,所以,根据成等比数列得,即,再求出m,k的值.
(1)因为数列的前项的和,
所以当时,;
当且时,,
当时,上式也成立,
所以数列的通项公式为.
(2)证明:因为对任意正整数都有成等比数列,
所以,即,
所以,
两式相除得,对任意正整数都有,
即,
当为奇数时,,所以,
当为偶数时,,而,所以,
所以.
所以,
所以数列为等差数列.
(3)因为,
所以,
因此存在正整数,使得成等比数列
,
因为都是正整数,则,
即时,对应的.
所以存在或或使得成等比数列.
科目:高中数学 来源: 题型:
【题目】某单位有员工1000名,平均每人每年创造利润10万元.为增加企业竞争力,决定优化产业结构,调整出名员工从事第三产业,调整后平均每人每年创造利润为万元,剩下的员工平均每人每年创造的利润可以提高.
(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?
(2)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润条件下,若要求调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则的取值范围是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与直线之间的阴影部分记为,区域中动点到的距离之积为1.
(1)求点的轨迹的方程;
(2)对于区域中动点,求的取值范围;
(3)动直线穿过区域,分别交直线于两点,若直线与点的轨迹有且只有一个公共点,求证:的面积值为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数的图象的顶点坐标为,且过坐标原点.数列的前项和为,点在二次函数的图象上.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,数列的前项和为,若对恒成立,求实数的取值范围;
(Ⅲ)在数列中是否存在这样一些项:,这些项都能够构成以为首项,为公比的等比数列?若存在,写出关于的表达式;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图为某大河的一段支流,岸线近似满足∥宽度为7圆为河中的一个半径为2的小岛,小镇位于岸线上,且满足岸线现计划建造一条自小镇经小岛至对岸的通道(图中粗线部分折线段,在右侧),为保护小岛,段设计成与圆相切,设
(1)试将通道的长表示成的函数,并指出其定义域.
(2)求通道的最短长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点F为抛物线的焦点,点A在抛物线E上,
点B在x轴上,且是边长为2的等边三角形。
(1)求抛物线E的方程;
(2)设C是抛物线E上的动点,直线为抛物线E在点C处的切线,求点B到直线距离的最小值,并求此时点C的坐标。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个铝合金窗分为上、下两栏,四周框架和中间隔档的材料为铝合金,宽均为6,上栏与下栏的框内高度(不含铝合金部分)的比为1:2,此铝合金窗占用的墙面面积为28800,设该铝合金窗的宽和高分别为,铝合金窗的透光部分的面积为.
(1)试用表示;
(2)若要使最大,则铝合金窗的宽和高分别为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com