精英家教网 > 高中数学 > 题目详情

【题目】如图,直三棱柱中,底面为等腰直角三角形,是侧棱上的点.

1)若,证明:的中点;

2)若,求二面角的余弦值.

【答案】1)证明见解析;(2.

【解析】

1)利用勾股定理得出,再由可得知为等边三角形,利用勾股定理得出,进而可证得结论成立;

2)以点为坐标原点,所在直线分别为轴建立空间直角坐标系,设,利用空间向量法可求得二面角的余弦值.

1)由直三棱柱平面

平面

为等腰直角三角形,

由勾股定理得

是等边三角形,则

由勾股定理得的中点;

2)易知两两垂直,以点为坐标原点,所在直线分别为轴建立如下图所示的空间直角坐标系

,则

设平面的法向量为,由,得

,得

又平面的法向量为

由图形可知,二面角为锐角,所以,二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,由经过伸缩变换得到曲线,以原点为极点,轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)求曲线的极坐标方程以及曲线的直角坐标方程;

(2)若直线的极坐标方程为与曲线、曲线在第一象限交于,且,点的极坐标为,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】焦点在x轴上的椭圆C经过点,椭圆C的离心率为是椭圆的左、右焦点,P为椭圆上任意点.

1)求椭圆的标准方程;

2)若点M的中点(O为坐标原点),过M且平行于OP的直线l交椭圆CAB两点,是否存在实数,使得;若存在,请求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,过椭圆的焦点且与长轴垂直的弦长为1

1)求椭圆C的方程;

2)设点M为椭圆上第一象限内一动点,AB分别为椭圆的左顶点和下顶点,直线MBx轴交于点C,直线MAy轴交于点D,求证:四边形ABCD的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”.他们的调查结果如下:

0项

1项

2项

3项

4项

5项

5项以上

理科生(人)

1

10

17

14

14

10

4

文科生(人)

0

8

10

6

3

2

1

(1)完成如下列联表,并判断是否有的把握认为,了解阿基米德与选择文理科有关?

比较了解

不太了解

合计

理科生

文科生

合计

(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.

(i)求抽取的文科生和理科生的人数;

(ii)从10人的样本中随机抽取3人,用表示这3人中文科生的人数,求的分布列和数学期望.

参考数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在x轴上,长轴的两个端点分别为.短轴的两个端点分别为.菱形的面积为,离心率.

(1)求椭圆的标准方程;

(2)设,经过点M作斜率不为0的直线交椭圆C于A、B两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若存在直线,使得对任意的,对任意的,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,多面体是由底面为的直四棱柱被截面所截而得到的,该直四棱柱的底面为菱形,其中

(1)求的长;

(2)求平面与底面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:+=1(a>b>0)的离心率为,直线l:x+2y=4与椭圆有且只有一个交点T.

(I)求椭圆C的方程和点T的坐标;

)O为坐标原点,与OT平行的直线l′与椭圆C交于不同的两点A,B,直线l′与直线l交于点P,试判断是否为定值,若是请求出定值,若不是请说明理由.

查看答案和解析>>

同步练习册答案