精英家教网 > 高中数学 > 题目详情
(2012•黑龙江)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是(  )
分析:由A,B及△ABC为正三角形可得,可求C的坐标,然后把三角形的各顶点代入可求z的值,进而判断最大与最小值,即可求解范围
解答:解:设C(a,b),(a>0,b>0)
由A(1,1),B(1,3),及△ABC为正三角形可得,AB=AC=BC=2
即(a-1)2+(b-1)2=(a-1)2+(b-3)2=4
∴b=2,a=1+
3
即C(1+
3
,2)
则此时直线AB的方程x=1,AC的方程为y-1=
3
3
(x-1),直线BC的方程为y-3=(
3
-2
)(x-1)
当直线x-y+z=0经过点A(1,1)时,z=0,经过点B(1,3)z=2,经过点C(1+
3
,2)时,z=1-
3

zmax=2,zmin=1-
3

故选A
点评:考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黑龙江)已知ω>0,函数f(x)=sin(ωx+
π
4
)
(
π
2
,π)
上单调递减.则ω的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)复数z=
-3+i
2+i
的共轭复数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)已知向量
a
b
夹角为45°,且|
a
|=1,|2
a
-
b
|=
10
,则|
b
|
=
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则(  )

查看答案和解析>>

同步练习册答案