精英家教网 > 高中数学 > 题目详情
若实数x,y满足
x-y+2≥0
x+y≥0
x≤1
,则z=3x+y的最小值是(  )
A、-4B、-2C、2D、6
考点:简单线性规划
专题:不等式的解法及应用
分析:求解线性规划中的线性目标函数的最值问题,作出平面区域,平移直线3x+y=0确定最小值即可.
解答: 解:作出不等式组
x-y+2≥0
x+y≥0
x≤1
所表示的平面区域,
作出直线3x+y=0,对该直线进行平移,
可以发现经过点B,即
x-y+2=0
x+y=0
的交点(-1,1)时
Z取得最小值-2;
故选:B.
点评:本题主要考查线性规划中的最值问题,正确画出可行域,判断直线经过的点是解题关键.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanθ=
1
2
,求θ.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=cos2x+asinx在区间(
π
6
π
2
)是减函数,则a的取值范围是(  )
A、(2,4)
B、(-∞,2]
C、(-∞,4]
D、[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

某市为考核一学校质量,对该校甲、乙两班各50人进行测验,根据这两班的成绩绘制茎叶图如图1:
(1)求甲、乙两班成绩的中位数,并将甲乙两班数据合在一起,绘出这些数据的频率分布直方图;
(2)根据抽样测验,从成绩的个位数为2的同学中任选4人,设这4人中有ξ人来自甲班,求随机变量ξ的分布列和期望值;
(3)根据茎叶图2分析甲、乙两班成绩的特点.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2-x-2a,g(x)=ax+b,其中a,b∈Ra>0.已知f(1)+g(1)+3=0.
(1)求b的值;
(2)设集合A={y|y=f(x),x∈[-2,0]},B={y|y=g(x),x∈[-2,0]}且A∩B≠ϕ试求a的取值范围
(3)是否存在实数a,使得对于任意的正数x,都有f(x)•g(x)≥0?若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}是等差数列,若a2,a4+3,a6+6构成公比为q的等比数列,则q=(  )
A、2B、3C、4D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
•(
b
+
c
),其中向量
a
=(sinx,-cosx),
b
=(sinx,-3cosx),
c
=(-cosx,sinx),x∈R.
(1)求函数f(x)的单调减区间;
(2)函数y=f(x)的图象可由函数y=sinx的图象经过怎样变化得出?
(3)若不等式|f(x)-m|<2在x∈[
π
8
π
2
]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sina,cosa是关于x的方程8x2+6mx+2m+1=0的两根,求
1
sina
+
1
cosa
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,已知a-b=2,c=4,sinA=2sinB.
(1)求△ABC的面积;
(2)求sin(A-B).

查看答案和解析>>

同步练习册答案