精英家教网 > 高中数学 > 题目详情

【题目】已知

x

2x+

sin(2x+

f(x)


(1)用五点法完成下列表格,并画出函数f(x)在区间 上的简图;
(2)若 ,函数g(x)=f(x)+m的最小值为2,试求处函数g(x)的最大值,指出x取值时,函数g(x)取得最大值.

【答案】
(1)解:列表如下:

x

2x+

0

π

sin( 2x+

0

1

0

﹣1

0

y

描点连线,作图如下:


(2)解:g(x)=f(x)+m=sin(2x+ )+ +m,

∵x∈[﹣ ],

∴2x+ ∈[﹣ ]

∴sin(2x+ )∈[﹣ ,1],

∴g(x)∈[m, +m],

∴m=2,

∴gmax(x)= +m=

当2x+ = 即x= 时g(x)最大,最大值为


【解析】(1)利用五点法,即将2x+ 看成整体取正弦函数的五个关键点,通过列表、描点、连线画出函数图象,(2)g(x)=f(x)+m=sin(2x+ )+ +m,x∈[﹣ ],求此函数的最值可先将2x+ 看成整体,求正弦函数的值域,最后利用函数g(x)=f(x)+m的最小值为2,解方程可得m的值,进而求出函数最大值.
【考点精析】通过灵活运用五点法作函数y=Asin(ωx+φ)的图象,掌握描点法及其特例—五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线)即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足 ,n∈N* . (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn , 若不等式Sn>kan﹣2对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.
(1)求x和y的值;
(2)计算甲班7位学生成绩的方差s2
(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1 , F2分别是椭圆E: =1(a>b>0)的左、右焦点,过F1倾斜角为45°的直线l与E相交于A,B两点,且|AB|= (Ⅰ)求E的离心率
(Ⅱ)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆与双曲线有相同的焦点F1(﹣c,0),F2(c,0),椭圆的一个短轴端点为B,直线F1B与双曲线的一条渐近线平行,若椭圆与双曲线的离心率分别为e1 , e2 , 则3e12+e22的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0)的焦点为(1,0),A,B是抛物线上位于x轴两侧的两动点,且 =﹣4(O为坐标原点).
(1)求抛物线方程;
(2)证明:直线AB过定点T;
(3)过点T作AB的垂线交抛物线于M,N两点,求四边形AMBN的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平行四边形ABCD中,E,G分别是BC,DC上的点且 =3 =3 ,DE与BG交于点O.
(1)求| |:| |;
(2)若平行四边形ABCD的面积为21,求△BOC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的最大值为1.
(1)求常数a的值;
(2)求使f(x)=0成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方体ABCD﹣A1B1C1D1中,AB=4,BC=3,AA1=5,则异面直线BD1与AC所成角的余弦值为

查看答案和解析>>

同步练习册答案