·ÖÎö £¨¢ñ£©Çó³öÍÖÔ²µÄa£¬b£¬c£¬ÓÉe=$\frac{c}{a}$£¬¼ÆËã¿ÉµÃ£»
£¨¢ò£©Ö±ÏßMA£¬MBµÄбÂÊÖ®»ýΪ¶¨Öµ-$\frac{1}{3}$£®ÉèM£¨m£¬n£©£¬A£¨s£¬t£©£¬B£¨-s£¬-t£©£¬´úÈëÍÖÔ²·½³Ì£¬Ïà¼õ£¬ÔÙÓÉÖ±ÏßµÄбÂʹ«Ê½£¬»¯¼òÕûÀí¿ÉµÃ½áÂÛ£»
£¨III£©ÉèM£¨m£¬n£©£¨m£¾0£¬n£¾0£©£¬M'£¨-m£¬-n£©£¬E£¨g£¬0£©£¬N£¨u£¬v£©£¬ÓÉÌâÒâ¿ÉµÃkMO+kME=0£¬Çó³öEµÄ×ø±ê£¬Ö±ÏßM'EµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬ÇóµÃNµÄ×ø±ê£¬ÔÙÓÉÏòÁ¿$\overrightarrow{M'M}$£¬$\overrightarrow{MN}$µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬»¯¼òÕûÀí£¬¼´¿ÉµÃÖ¤£®
½â´ð ½â£º£¨¢ñ£©ÍÖÔ²C£º$\frac{{x}^{2}}{3}$+y2=1µÄa=$\sqrt{3}$£¬b=1£¬c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{2}$£¬
¿ÉµÃÍÖÔ²CµÄÀëÐÄÂÊΪe=$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$£»
£¨¢ò£©Ö±ÏßMA£¬MBµÄбÂÊÖ®»ýΪ¶¨Öµ-$\frac{1}{3}$£®
ÀíÓÉ£ºÉèM£¨m£¬n£©£¬A£¨s£¬t£©£¬B£¨-s£¬-t£©£¬
Ôò$\frac{{m}^{2}}{3}$+n2=1£¬$\frac{{s}^{2}}{3}$+t2=1£¬
Ïà¼õ¿ÉµÃ£¬$\frac{{m}^{2}-{s}^{2}}{3}$=-£¨n2-t2£©£¬
¼´ÓÐkMA•kMB=$\frac{n-t}{m-s}$•$\frac{n+t}{m+s}$=$\frac{{n}^{2}-{t}^{2}}{{m}^{2}-{s}^{2}}$=-$\frac{1}{3}$£»
£¨¢ó£©Ö¤Ã÷£ºÉèM£¨m£¬n£©£¨m£¾0£¬n£¾0£©£¬M'£¨-m£¬-n£©£¬E£¨g£¬0£©£¬N£¨u£¬v£©£¬
ÓÉ¡÷MOEÊǵȵÈÑüÈý½ÇÐΣ®MO=ME£¬¿ÉµÃkMO+kME=0£¬
¼´Îª$\frac{n}{m}$+$\frac{n}{m-g}$=0£¬¿ÉµÃg=2m£¬¼´E£¨2m£¬0£©£¬
Ö±ÏßM'E£ºy=$\frac{n}{3m}$£¨x-2m£©£¬´úÈëÍÖÔ²x2+3y2=3£¬
¿ÉµÃ£¨1+$\frac{{n}^{2}}{3{m}^{2}}$£©x2-$\frac{4{n}^{2}}{3m}$x+$\frac{4{n}^{2}}{3}$-3=0£¬
¿ÉµÃ-m+u=$\frac{4m{n}^{2}}{{n}^{2}+3{m}^{2}}$£¬½âµÃu=$\frac{5m{n}^{2}+3{m}^{3}}{{n}^{2}+3{m}^{2}}$£¬
v=$\frac{n}{3m}$£¨u-2m£©=$\frac{n£¨{n}^{2}-{m}^{2}£©}{{n}^{2}+3{m}^{2}}$£¬
Ôò$\overrightarrow{M'M}$•$\overrightarrow{MN}$=£¨2m£¬2n£©•£¨u-m£¬v-n£©=2mu-2m2+2nv-2n2
=$\frac{2m£¨5m{n}^{2}+3{m}^{3}£©}{{n}^{2}+3{m}^{2}}$-2m2+$\frac{2{n}^{2}£¨{n}^{2}-{m}^{2}£©}{{n}^{2}+3{m}^{2}}$-2n2
=$\frac{8{m}^{2}{n}^{2}}{{n}^{2}+3{m}^{2}}$+$\frac{-8{m}^{2}{n}^{2}}{{n}^{2}+3{m}^{2}}$=0£®
¼´ÓÐ$\overrightarrow{M'M}$¡Í$\overrightarrow{MN}$£¬
Ôò¡ÏM¡äMNÊÇÖ±½Ç£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷ÒªÊÇÀëÐÄÂʺͷ½³ÌµÄÔËÓ㬿¼²éÁªÁ¢·½³ÌÏà¼õ£¬ÏûÔª£¬ÔËÓÃΤ´ï¶¨Àí£¬¿¼²éÏòÁ¿´¹Ö±µÄÌõ¼þ£ºÊýÁ¿»ýΪ0£¬Í¬Ê±¿¼²éÖ±ÏßµÄбÂʺͷ½³ÌµÄÔËÓ㬿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\sqrt{2}$ | B£® | 1+$\sqrt{2}$ | C£® | 1+$\sqrt{3}$ | D£® | 2+$\sqrt{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
PM2.5ÈÕƽ¾ùŨ¶È£¨Î¢¿Ë/Á¢·½Ã×£© | [0£¬20] | £¨20£¬40] | £¨40£¬60] | £¨60£¬80] | £¨80£¬100] |
ƵÊý£¨Ì죩 | 2 | 3 | 4 | 6 | 5 |
ÂúÒâ¶ÈµÈ¼¶ | ·Ç³£ÂúÒâ | ÂúÒâ | ²»ÂúÒâ |
PM2.5ÈÕƽ¾ùŨ¶È£¨Î¢¿Ë/Á¢·½Ã×£© | ²»³¬¹ý20 | ´óÓÚ20²»³¬¹ý60 | ³¬¹ý60 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 2 | B£® | 2i | C£® | -2i | D£® | $\sqrt{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 2¦Ñ£¨sin ¦È+cos ¦È£©=r | B£® | 2¦Ñ£¨sin ¦È+cos ¦È£©=-r | ||
C£® | $\sqrt{2}$¦Ñ£¨sin ¦È+cos ¦È£©=r | D£® | $\sqrt{2}$¦Ñ£¨sin ¦È+cos ¦È£©=-r |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com