精英家教网 > 高中数学 > 题目详情

【题目】已知点为抛物线 的焦点,点是准线上的动点,直线交抛物线两点,若点的纵坐标为,点为准线轴的交点.

(1)求直线的方程;

(2)求的面积范围.

【答案】(1)(2)

【解析】【试题分析】1)根据题意得出两点的坐标,由点斜式写出直线方程,并化简为一般式.2)联立直线的方程和直线的方程,消去,化简后写出韦达定理,根据抛物线的弦长公式求出,利用点到直线的距离公式求得到直线的距离,由此写出三角形面积的表达式,并求其取值范围.

【试题解析】

解:(1)由题知点 的坐标分别为

于是直线的斜率为

所以直线的方程为,即为.

(2)设 两点的坐标分别为

所以 .于是

到直线的距离

所以

因为,于是

所以的面积范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图动点P从单位正方形ABCD顶点A开始顺次经B、C、D绕边界一周,当 表示点P的行程, 表示PA之长时,求y关于x的解析式,并求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,PA垂直于以AB为直径的圆所在平面,C为圆上异于AB的任意一点,垂足为E,点FPB上一点,则下列判断中不正确的是( )﹒

A.平面PACB.C.D.平面平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,圆.

(1)若过点的直线被圆截得的弦长为,求直线的方程;

(2)设动圆同时平分圆的周长、圆的周长.

①证明:动圆圆心在一条定直线上运动;

②动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为F且过点A (2,2),椭圆的离心率为,点B为抛物线C与椭圆D的一个公共点,且.

(Ⅰ)求椭圆D的方程;

(Ⅱ)过椭圆内一点P(0,t)的直线l的斜率为k,且与椭圆C交于M,N两点,设直线OM,ON(O为坐标原点)的斜率分别为k1,k2若对任意k,存在实数λ,使得k1+ k2=λk,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,已知CA=1,CB=2,∠ACB=60°.

(1)求||;

(2)已知点D是AB上一点,满足,点E是边CB上一点,满足

①当λ=时,求

②是否存在非零实数λ,使得?若存在,求出的λ值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国第一高摩天轮南昌之星摩天轮高度为,其中心距地面,半径为,若某人从最低点处登上摩天轮,摩天轮匀速旋转,那么此人与地面的距离将随时间变化,后达到最高点,从登上摩天轮时开始计时.

1)求出人与地面距离与时间的函数解析式;

2)从登上摩天轮到旋转一周过程中,有多长时间人与地面距离大于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像上存在点函数的图像上存在点关于原点对称,则的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某书店销售刚刚上市的某高二数学单元测试卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:

单价x/

18

19

20

21

22

销量y/

61

56

50

48

45

1)求试销天的销量的方差和关于的回归直线方程;

附: .

2)预计以后的销售中,销量与单价服从上题中的回归直线方程,已知每册单元测试卷的成本是10元,为了获得最大利润,该单元测试卷的单价应定为多少元?

查看答案和解析>>

同步练习册答案