精英家教网 > 高中数学 > 题目详情

【题目】某省从2021年开始,高考采用取消文理分科,实行的模式,其中的“1”表示每位学生必须从物理、历史中选择一个科目且只能选择一个科目.某校高一年级有2000名学生(其中女生900人).该校为了解高一年级学生对“1”的选课情况,采用分层抽样的方法抽取了200名学生进行问卷调查,下表是根据调查结果得到的列联表.

性别

选择物理

选择历史

总计

男生

________

50

女生

30

________

总计

________

________

200

1)求的值;

2)请你依据该列联表判断是否有99.5%的把握认为选择科目与性别有关?说明你的理由.

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

附:,其中.

【答案】12)有99.5%的把握认为选择科目与性别有关,详见解析

【解析】

1)根据分层抽样以及女生由900人,则由求解,进而得到n.

2)根据(1)的数据完成列联表,然后代入公式求得,再与临界表对比下结论.

1)根据题意得,

解得

所以女生人数为人;

2)列联表如下:

性别

选择物理

选择历史

总计

男生

60

50

110

女生

30

60

90

总计

90

110

200

计算

所以有99.5%的把握认为选择科目与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为等差数列,各项为正的等比数列的前n项和为 ,且.在①;②;③这三个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件解答,则按选择第一个解答计分).

1)求数列的通项公式;

2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆轴正半轴交于点,与轴交于两点.

1)求过三点的圆的方程;

2)若为坐标原点,直线与椭圆和(1)中的圆分别相切于点和点不重合),求直线与直线的斜率之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】熔喷布是口罩生产的重要原材料,1吨熔喷布大约可供生产100万只口罩.2020年,制造口罩的企业甲的熔喷布1月份的需求量为100吨,并且从2月份起,每月熔喷布的需求量均比上个月增加10%.企业乙是企业甲熔喷布的唯一供应商,企业乙20201月份的产能为100吨,为满足市场需求,从2月份到月份( ),每个月比上个月增加一条月产量为50吨的生产线投入生产,从月份到9月份不再增加新的生产线.计划截止到9月份,企业乙熔喷布的总产量除供应企业甲的需求外,还剩余不少于990吨的熔喷布可供给其它厂商,则企业乙至少要增加___条熔喷布生产线.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】非典和新冠肺炎两场疫情告诉我们:应坚决杜绝食用野生动物,提倡文明健康,绿色环保的生活方式.在我国抗击新冠肺炎期间,某校开展一次有关病毒的网络科普讲座.高三年级男生60人,女生40人参加.按分层抽样的方法,在100名同学中选出5人,则男生中选出________.再从此5人中选出两名同学作为联络人,则这两名联络人中男女都有的概率是________.(第12分,第23分)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示多面体的底面是菱形,平面平面.

I)求证:平面

II)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)函数,讨论的单调性;

2)曲线在点处的切线为,是否存在这样的点使得直线与曲线也相切,若存在,判断满足条件的点的个数,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.根据过去50周的资料显示,该基地周光照量(小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量(千克)与使用某种液体肥料的质量(千克)之间的关系如图所示.

(1)依据上图,是否可用线性回归模型拟合的关系?请计算相关系数并加以说明(精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合)

(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪运行台数受周光照量限制,并有如下关系:

周光照量(单位:小时)

光照控制仪运行台数

3

2

1

若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以频率作为概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?

附:相关系数公式

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,关于x的方程有三个不等实根,则实数m的取值范围是________

查看答案和解析>>

同步练习册答案