精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx,g(x)=
ax
,(a∈R).
(1)当a=2时,求函数p(x)=f(x)+g(x)的单调区间;
(2)若函数h(x)=f(x)-g(x)在[1,e]上的最小值为3,求a的值;
(3)若存在x0∈[1,+∞),使得f(x0)>x02+g(x0)能成立,求a的取值范围.
分析:(1)将a的值代入导数,利用导数判断函数的单调性求出单调区间
(2)先求导在分类讨论,代入h(x)的最小值求a
(3)在x0∈[1,+∞)范围内,根据恒成立问题利用不等式求出a的取值范围
解答:解:(1)由题意:p(x)的定义域为(0,+∞),且p/(x)=
1
x
-
2
x2
=
x-2
x2

当a=2时,∴在区间(0,2)上p′(x)<0,在(2,+∞)上p′(x)>0,故p(x)的单调增区间是(2,+∞),单调减区间是(0,2).
(2)由题意可知:h/(x)=
x+a
x2

①若a≥-1,则x+a≥0,即h′(x)≥0在[1,e]上恒成立,此时h(x)在[1,e]上为增函数,[h(x)]min=h(1)=-a=3,∴a=-3(舍去).
②若a≤-e,则x+a≤0,即h′(x)≤0在[1,e]上恒成立,此时h(x)在[1,e]上为减函数,[h(x)]min=h(e)=1-
a
e
=3
,∴a=-2e
③若-e<a<-1,令h′(x)=0得x=-a,
当1<x<-a时,h′(x)<0,h(x)在(1,-a)上为减函数,
当-a<x<e时,h′(x)>0,h(x)在(-a,e)上为增函数,[h(x)]min=h(-a)=ln(-a)+1=3,∴a=-e2(舍去)综上可知:a=-2e.
(3)∵由f(x0)>x02+g(x0)∴lnx0x02+
a
x0

又x0>1∴a<x0lnx0-x03令M(x)=xlnx-x3,只需a<M(x)max再令N(x)=M/(x)=-1+lnx-3x2,,N/(x)=
1
x
-6x=
1-6x2
x

∵N′(x)在[1,+∞)上小于0,
∴N(x)在[1,+∞)上是减函数,N(x)≤N(1)=-2即M′(x)<0,
故M(x)在[1,+∞)上也是减函数,M(x)≤M(1)=-1.∴a<-1,
∴存在x0∈[1,+∞),使得f(x0)>x02+g(x0)能成立,a的取值范围是a<-1.
点评:该题考查函数的求导,以及利用导数求函数的单调性,该题易在做第二步时分类讨论时讨论不全.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案