精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)讨论函数的单调性;

(2)若不等式恒成立,求的取值范围.

【答案】(1)当时,上单调递增;当时,上单调递减,在上单调递增(2) .

【解析】

(1)求出导函数,通过当时,当时,判断导函数的符号,然后判断函数的单调性;(2)通过当时,当时,当时,分别求解判断求解函数的最小值,推出的取值范围.

(1)

0时,,∴0恒成立,

在定义域(0,+∞)上单调递增

0时,令=0,得x=

∵x>0,∴0得x0得0<x<

在(0,a)上单调递减,在(a,+∞)上单调递增.

(2)当=0时,0恒成立

0时,当x→0时,→﹣∞,0不成立

0时,由(1)可知f(x)min=f)=ln

f)=ln≥0得1﹣ln≥0.

∈(0,e]

综上所述,的取值范围是[0,e].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】曲线C:ρ2﹣2ρcosθ﹣8=0 曲线E: (t是参数)
(1)求曲线C的普通方程,并指出它是什么曲线.
(2)当k变化时指出曲线K是什么曲线以及它恒过的定点并求曲线E截曲线C所得弦长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按下列程序框图来计算:
如果输入的x=5,应该运算( )次才停止.
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格(单位:元/套)满足的关系式,其中为常数.已知销售价格为4/套时,每日可售出套题21千套.

1)求的值;

2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,若存在ak , 使得“ak>ak1且ak>ak+1”成立(其中k≥2,k∈N*),则称ak为{an}的一个H值.现有如下数列:①an=1﹣2n;②an=sinn;③an= ④an=lnn﹣n,则存在H值的数列有( )个.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是平行四边形,已知,平面平面.

(1)证明:

(2)若,求平面与平面所成二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣b)lnx+x2在区间[1,e]上单调递增,则实数b的取值范围是(
A.(﹣∞,﹣3]
B.(﹣∞,2e]
C.(﹣∞,3]
D.(﹣∞,2e2+2e]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)

)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?

)经过多次测试后,甲每次解答一道几何题所用的时间在57分钟,乙每次解答一道几何题所用的时间在68分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣alnx,其中a>0,x>0,e是自然对数的底数. (Ⅰ)讨论f(x)的单调性;
(Ⅱ)设函数g(x)= ,证明:0<g(x)<1.

查看答案和解析>>

同步练习册答案