精英家教网 > 高中数学 > 题目详情
设集合A={(x,y)|y=2x-1,x∈N*},B={(x,y)|y=ax2-ax+a,x∈N*},问是否存在非零整数a,使A∩B≠∅?若存在,请求出a的值;若不存在,说明理由.
假设A∩B≠∅,则方程组
y=2x-1
y=ax2-ax+a
有正整数解,
消去y,得ax2-(a+2)x+a+1=0.(*)
由△≥0,得(a+2)2-4a(a+1)≥0,解得-
2
3
3
≤a≤
2
3
3

因a为非零整数,∴a=±1,
当a=-1时,代入(*),解得x=0或x=-1,而x∈N*.故a≠-1.
当a=1时,代入(*),解得x=1或x=2,符合题意.
故存在a=1,使得A∩B≠∅,此时A∩B={(1,1),(2,3)}.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
过点(
3
2
2
)
,它的离心率为
6
2
,P、Q分别在双曲线的两条渐近线上,M是线段PQ中点,|PQ|=2
2

(Ⅰ)求双曲线及其渐近线方程;
(Ⅱ)求点M的轨迹C的方程;
(Ⅲ)过C左焦点F1的直线l与C相交于点A、B,F2为C的右焦点,求△ABF2面积最大时
F2A
F2B
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设P是圆x2+y2=2上的动点,PD⊥x轴,垂足为D,M为线段PD上一点,且|PD|=
2
|MD|,点A、F1的坐标分别为(0,
2
),(-1,0).
(1)求点M的轨迹方程;
(2)求|MA|+|MF1|的最大值,并求此时点M的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于直线L:y=kx+1是否存在这样的实数,使得L与双曲线C:3x2-y2=1的交点A,B关于直线y=ax(a为常数)对称?若存在,求k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

平面直角坐标系xOy中,过椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)右焦点的直线x+y-
3
=0交M于A,B两点,P为AB的中点,且OP的斜率为
1
2

(Ⅰ)求M的方程
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C以双曲线
x2
3
-y2=1
的焦点为顶点,以双曲线的顶点为焦点.
(1)求椭圆C的方程;
(2)若直线l:y=kx+m与椭圆C相交于点M,N两点(M,N不是左右顶点),且以线段MN为直径的圆过椭圆C左顶点A,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
a
=(x,0)
b
=(1,y)
,且(
a
+
3
b
)⊥(
a
-
3
b
)

(1)求点P(x,y)的轨迹C的方程,且画出轨迹C的草图;
(2)若直线l:y=kx+m(k≠0)与上述曲线C交于不同的两点A、B,求实数k和m所满足的条件;
(3)在(2)的条件下,若另有定点D(0,-1),使|AD|=|BD|,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过椭圆
x2
2
+y2=1
的左焦点F1的直线l交椭圆于A、B两点.
(1)求
AO
AF1
的范围;
(2)若
OA
OB
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知梯形ABCD的上底AD=8 cm,下底BC=15 cm,在边AB、CD上分别取E、F,使AE∶EB=DF∶FC=3∶2,则EF=________.

查看答案和解析>>

同步练习册答案