分析 (Ⅰ)根据圆内接四边形的性质,可得∠EAD=∠C,进而可得△AED∽△CEB,结合相似三角形的性质及已知可得结论;
(Ⅱ)根据切割线定理可得EF2=ED•EC=EA•EB,设DE=x,由AB=2,CD=5构造方程,解得DE,进而可得EF长.
解答 证明:(Ⅰ)∵四边形ABCD内接于⊙O,
∴∠EAD=∠C,
又∵∠DEA=∠BEC,
∴△AED∽△CEB,
∴ED:EB=AD:BC=1:2,
即EB=2ED;
解:(Ⅱ)∵EF切⊙O于F.
∴EF2=ED•EC=EA•EB,
设DE=x,则由AB=2,CD=5得:
x(x+5)=2x(2x-2),解得:x=3,
∴EF2=24,即EF=2$\sqrt{6}$
点评 本题考查的知识点是圆内接四边形的性质,相似三角形的判定与性质,切割线定理,难度中档.
科目:高中数学 来源: 题型:选择题
A. | “a≤b”是“a+c≤b+c”的充分不必要条件 | |
B. | “已知x,y∈R,且x+y≠6,则x≠2或y≠4”是真命题 | |
C. | 命题“?x∈R,2x>0”的否定是“?x∈R,2x<0” | |
D. | “若x2-1=0,则x=1或x=-1”的否命题为“x2-1≠0或x≠-1” |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ($\frac{1}{4}$,1) | B. | (1,4) | C. | (1,8) | D. | (8,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com