精英家教网 > 高中数学 > 题目详情
17.已知四边形ABCD内接于⊙O,AD:BC=1:2,BA、CD的延长线交于点E,且EF切⊙O于F.
(Ⅰ)求证:EB=2ED;
(Ⅱ)若AB=2,CD=5,求EF的长.

分析 (Ⅰ)根据圆内接四边形的性质,可得∠EAD=∠C,进而可得△AED∽△CEB,结合相似三角形的性质及已知可得结论;
(Ⅱ)根据切割线定理可得EF2=ED•EC=EA•EB,设DE=x,由AB=2,CD=5构造方程,解得DE,进而可得EF长.

解答 证明:(Ⅰ)∵四边形ABCD内接于⊙O,
∴∠EAD=∠C,
又∵∠DEA=∠BEC,
∴△AED∽△CEB,
∴ED:EB=AD:BC=1:2,
即EB=2ED;
解:(Ⅱ)∵EF切⊙O于F.
∴EF2=ED•EC=EA•EB,
设DE=x,则由AB=2,CD=5得:
x(x+5)=2x(2x-2),解得:x=3,
∴EF2=24,即EF=2$\sqrt{6}$

点评 本题考查的知识点是圆内接四边形的性质,相似三角形的判定与性质,切割线定理,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.数列{an}中,an=$\frac{4n-π}{2n-11}$,则该数列最大项是(  )
A.a1B.a5C.a6D.a7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)在[0,+∞)上有连续导数,且f′(x)≥k>0,f(0)<0.证明f(x)在(0,+∞)内有且仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列命题中,真命题是(  )
A.“a≤b”是“a+c≤b+c”的充分不必要条件
B.“已知x,y∈R,且x+y≠6,则x≠2或y≠4”是真命题
C.命题“?x∈R,2x>0”的否定是“?x∈R,2x<0”
D.“若x2-1=0,则x=1或x=-1”的否命题为“x2-1≠0或x≠-1”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设f(x)是定义在R上的偶函数,且f(2+x)=f(2-x),当x∈[0,2]时,f(x)=($\sqrt{2}$)x-1,若关于x的方程f(x)-loga(x+2)=0(a>0且a≠1)在区间(-2,6)内恰有4个不等的实数根,则实数a的取值范围是(  )
A.($\frac{1}{4}$,1)B.(1,4)C.(1,8)D.(8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=x2+bsinx,其中b为常数.那么“b=0”是“f(x)为偶函数”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知全集U=R,集合A={x|-1≤x≤3},B={x|x<2},则A∩B=[-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.高安二中高中年级早上7点早读,假设该校学生小x与小y在早上6:30-6:50之间到校且每人在该时间段的任何时间到校是等可能的,则小x比小y至少早5分钟到校的概率为$\frac{9}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某商店销售一种商品,售价比进价高20%以上才能出售,为了获得更多利润,店方以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价多少元,商店才能出售?

查看答案和解析>>

同步练习册答案