【题目】设函数是定义在R上的奇函数,,若在单调递减,则不等式的解集为______.
【答案】
【解析】
根据题意,分析可得在区间(0,2)或(﹣∞,﹣2)上,f(x)>0;在(2,+∞)或(﹣2,0)上,f(x)<0,又由原不等式等价于或,分析可得不等式的解集,即可得答案.
根据题意,函数f(x)是定义在R上的奇函数,且在(0,+∞)单调递减,
又由f(﹣2)=0,则f(2)=﹣f(﹣2)=0,
则在区间(0,2)上,f(x)>0,则(2,+∞)上,f(x)<0,
又由f(x)为R上的奇函数,则在区间(﹣∞,﹣2)上,f(x)>0,则(﹣2,0)上,f(x)<0,
则在区间(0,2)或(﹣∞,﹣2)上,f(x)>0;在(2,+∞)或(﹣2,0)上,f(x)<0,(x+1)f(x﹣1)>0或,
解可得:1<x<3,
即x的取值范围为(1,3);
故答案为:(1,3).
科目:高中数学 来源: 题型:
【题目】某家电公司根据销售区域将销售员分成两组.2017年年初,公司根据销售员的销售业绩分发年终奖,销售员的销售额(单位:十万元)在区间内对应的年终奖分别为2万元,2.5万元,3万元,3.5万元.已知200名销售员的年销售额都在区间内,将这些数据分成4组: ,得到如下两个频率分布直方图:
以上面数据的频率作为概率,分别从组与组的销售员中随机选取1位,记分别表示 组与组被选取的销售员获得的年终奖.
(1)求的分布列及数学期;
(2)试问组与组哪个组销售员获得的年终奖的平均值更高?为什么?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中为常数.
(Ⅰ)若的图像在处的切线经过点(3,4),求的值;
(Ⅱ)若,求证: ;
(Ⅲ)当函数存在三个不同的零点时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“双十二”是继“双十一”之后的又一个网购狂欢节,为了刺激“双十二”的消费,某电子商务公司决定对“双十一”的网购者发放电子优惠券.为此,公司从“双十一”的网购消费者中用随机抽样的方法抽取了100人,将其购物金额(单位:万元)按照, 分组,得到如下频率分布直方图:
根据调查,该电子商务公司制定了发放电子优惠券的办法如下:
(Ⅰ)求购物者获得电子优惠券金额的平均数;
(Ⅱ)从这100名购物金额不少于0.8万元的人中任取2人,求这两人的购物金额在0.8~0.9万元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家电公司根据销售区域将销售员分成,两组.年年初,公司根据销售员的销售业绩分发年终奖,销售员的销售额(单位:十万元)在区间,,,内对应的年终奖分别为2万元,2.5万元,3万元,3.5万元.已知销售员的年销售额都在区间内,将这些数据分成4组:,,,,得到如下两个频率分布直方图:
以上面数据的频率作为概率,分别从组与组的销售员中随机选取1位,记,分别表示组与组被选取的销售员获得的年终奖.
(1)求的分布列及数学期望;
(2)试问组与组哪个组销售员获得的年终奖的平均值更高?为什么?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆: , 其左右焦点为及,过点的直线交椭圆于两点,线段的中点为, 的中垂线与轴和轴分别交于两点,且、、构成等差数列.
(1)求椭圆的方程;
(2)记的面积为, (为原点)的面积为,试问:是否存在直线,使得?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com