精英家教网 > 高中数学 > 题目详情
7.已知直线l经过点A(0,4),且与直线2x-y-3=0垂直,那么直线l的方程是(  )
A.x+2y-8=0B.x+2y+8=0C.2x-y-4=0D.2x-y+4=0

分析 由题意可求出直线l的斜率,由点斜式写出直线方程化简即可.

解答 解:∵直线l与直线2x-y-3=0垂直,
∴直线l的斜率为-$\frac{1}{2}$,
则y-4=-$\frac{1}{2}$x,
即x+2y-8=0.
故选:A.

点评 本题考查了直线方程的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.AB.AD?α,CB,CD?β,E∈AB.F∈BC,G∈CD,H∈DA,若直线EH与FG相交于点P,则P点必在直线BD上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|$\frac{1}{x}$-1|.
(1)求函数y=f(x)-3的零点;
(2)利用定义法判断函数f(x)在(0,1]上的单调性,并求出函数f(x)的单调区间;
(3)若存在实数a、b(a<b且a≠0),使得集合{y|y=f(x),a≤x≤b}=[ma,mb],求非零实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\overrightarrow{a}$=(6,0),$\overrightarrow{b}$=(-3,3),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.45°B.60°C.135°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆$\left\{\begin{array}{l}{x=3cosθ}\\{y=\sqrt{5}sinθ}\end{array}\right.$(θ为参数)的左、右焦点分别为F1、F2,一直线经过右焦点F2,且与椭圆的长轴垂直,若该直线与该极坐标系中的曲线C:ρ=3交于A、B两点,则△F1AB的面积为4$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C所对应的边分别为a,b,c,$sin(2C-\frac{π}{2})=\frac{1}{2}$,且a2+b2<c2
求:(1)角C的大小;  
(2)$\frac{a+b}{c}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义:若复数z与z1满足z•z1=1,则称复数z与z1互为倒数,已知复数z=i(2+3i),则复数z的倒数z1为(  )
A.-$\frac{3}{13}+\frac{2}{13}$iB.-$\frac{3}{13}-\frac{2}{13}$iC.$\frac{3}{13}+\frac{2}{13}$iD.$\frac{3}{13}-\frac{2}{13}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知不论a为何正实数,y=ax+2-3的图象恒过定点,则这个定点的坐标是(-2,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设F1,F2分别是椭圆C:$\frac{{x}^{2}}{4}$+y2=1的左、右焦点,过点M且斜率为k的直线l与椭圆C交于A、B两点,O是坐标原点.
(1)若M(0,$\sqrt{5}$),椭圆与x轴正半轴、y轴正半轴交点分别为P、Q,问:是否存在常数k,使向量$\overrightarrow{OA}$+$\overrightarrow{OB}$与$\overrightarrow{pQ}$共线;
(2)若M为椭圆C的右焦点,且$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}B}$,求k的值;
(3)若M为椭圆C的左顶点,Q为线段AB的垂直平分线与y轴的交点,且$\overrightarrow{QA}•\overrightarrow{QB}$=4,求点Q的坐标.

查看答案和解析>>

同步练习册答案