精英家教网 > 高中数学 > 题目详情

【题目】设函数是定义在R上的函数,对任意实数x,有f(1﹣x)=x2﹣3x+3.

(1)求函数的解析式;

(2)若函数在g(x)=f(x)﹣(1+2m)x+1(mR)在上的最小值为﹣2,求m的值.

【答案】(1)f(x)=x2+x+1;(2)2.

【解析】

(1)令,则,利用换元法即可求解函数的解析式;

(2)结合(1)中的结论,分类讨论求得函数的最值,即可求解结果

解:(1)令1﹣x=t,则x=1﹣t,f(t)=(1﹣t)2﹣3(1﹣t)+3,

f(t)=t2+t+1,∴函数的解析式为f(x)=x2+x+1.

(2)g(x)=x2﹣2mx+2=(x﹣m)2+2﹣m2).

g(x)min=g(m)=2﹣m2=﹣2,m=2.

,舍去.

综上可知m=2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三个顶点坐标分别为:直线经过点

(1)外接圆的方程

(2)若直线相交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体ABCDA1B1C1D1中,EBC的中点,

平面B1EDA1D1F

(1)指出FA1D1上的位置,并说明理由;

(2)求直线A1CDE所成的角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|﹣5+21x﹣4x2<0},B={x∈Z|﹣3<x<6},则(RA)∩B的元素的个数为(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩形ABCD中,AB=1,AD=2,动点P在以C为圆心且与BD相切的圆上,则的最大值为(

A. B. C. -2 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足:对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;当x∈(1,2]时,f(x)=2﹣x.若f(a)=f(2020),则满足条件的最小的正实数a的值为(  )

A. 28 B. 100 C. 34 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一次考试中,五名学生的数学、物理成绩如下表

学生

数学

89

91

93

95

97

物理

87

89

89

92

93

(1)要在这五名学生中选2名参加一项活动,求选中的同学中至少有一人的物理成绩高于90分的概率.

(2)求出这些数据的线性回归直线方程.

参考公式回归直线的方程是:

其中对应的回归估计值. .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为 ,则 =(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案