精英家教网 > 高中数学 > 题目详情
函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是(  )
A、y=g(x)B、y=g(-x)C、y=-g(x)D、y=-g(-x)
考点:反函数
专题:函数的性质及应用
分析:设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,P′(y,x)关于直线x+y=0的对称点P″(-x,-y)在y=g(x)图象上,代入解析式变形可得.
解答:解:设P(x,y)为y=f(x)的反函数图象上的任意一点,
则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,
又∵函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,
∴P′(y,x)关于直线x+y=0的对称点P″(-x,-y)在y=g(x)图象上,
∴必有-y=g(-x),即y=-g(-x)
∴y=f(x)的反函数为:y=-g(-x)
故选:D
点评:本题考查反函数的性质和对称性,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集U=R,集合M={x|x2-2x-3≤0},N={y|y=3x2+1},则M∩(∁UN)=(  )
A、{x|-1≤x<1}B、{x|-1≤x≤1}C、{x|1≤x≤3}D、{x|1<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中既有奇函数,又在区间[-1,1]上单调递增的是(  )
A、f(x)=sin2xB、f(x)=x+tanxC、f(x)=x3-xD、f(x)=2x+2-x

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>2,b>2,且
1
2
log2(a+b)+log2
2
a
=
1
2
log2
1
a+b
+log2
b
2
,则log2(a-2)+log2(b-2)=(  )
A、0
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=log34,b=(
1
5
0,c=log
1
3
10,则下列关系中正确的是(  )
A、a>b>c
B、b>a>c
C、a>c>b
D、c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2014(x∈R),又α、β是锐角三角形的两个内角,则有(  )
A、f(sinα)>f(cosβ)B、f(sinα)<f(cosβ)C、f(sinα)>f(sinβ)D、f(cosα)>f(cosβ)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是周期为2的周期函数,且当x∈[-1,1]时,f(x)=2|x|-1,则函数F(x)=f(x)-|lgx|的零点个数是(  )
A、9B、10C、11D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
kx+1,x≤0
lnx
x
,x>0
,则关于F(x)=f(f(x))+a的零点个数,判断正确的是(  )
A、k<0时,若a≥e,则有2个零点
B、k>0时,若a>e,则有4个零点
C、无论k为何值,若-
1
e
<a<0,都有2个零点
D、k>0时,若0≤a<e,则有3个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
f1(x),x∈[0,
1
2
)
f2(x),x∈[
1
2
,1]
,其中f1(x)=-2(x-
1
2
2+1,f2(x)=-2x+2.x0∈[0,
1
2
),x1=f(x0),f(x1)=x0,求x0的值.

查看答案和解析>>

同步练习册答案